diff --git a/brainreg/napari/register.py b/brainreg/napari/register.py index 448a440..3d7bacf 100644 --- a/brainreg/napari/register.py +++ b/brainreg/napari/register.py @@ -127,9 +127,9 @@ def brainreg_register(): freeform_n_steps=6, freeform_use_n_steps=4, bending_energy_weight=0.95, - grid_spacing=10, - smoothing_sigma_reference=1, - smoothing_sigma_floating=1, + grid_spacing=-10, + smoothing_sigma_reference=-1.0, + smoothing_sigma_floating=-1.0, histogram_n_bins_floating=128, histogram_n_bins_reference=128, debug=False, @@ -194,15 +194,19 @@ def brainreg_register(): label="bending_energy_weight", ), grid_spacing=dict( - value=DEFAULT_PARAMETERS["grid_spacing"], label="grid_spacing" + value=DEFAULT_PARAMETERS["grid_spacing"], + label="grid_spacing", + min=-100, ), smoothing_sigma_reference=dict( value=DEFAULT_PARAMETERS["smoothing_sigma_reference"], label="smoothing_sigma_reference", + min=-99.0, ), smoothing_sigma_floating=dict( value=DEFAULT_PARAMETERS["smoothing_sigma_floating"], label="smoothing_sigma_floating", + min=-99.0, ), histogram_n_bins_floating=dict( value=DEFAULT_PARAMETERS["histogram_n_bins_floating"], @@ -239,10 +243,10 @@ def widget( freeform_use_n_steps: int, bending_energy_weight: float, grid_spacing: int, - smoothing_sigma_reference: int, + smoothing_sigma_reference: float, smoothing_sigma_floating: float, - histogram_n_bins_floating: float, - histogram_n_bins_reference: float, + histogram_n_bins_floating: int, + histogram_n_bins_reference: int, debug: bool, reset_button, check_orientation_button, @@ -314,7 +318,9 @@ def widget( grid_spacing: int Sets the control point grid spacing in x, y & z. Smaller grid spacing allows for more local deformations - but increases the risk of over-fitting. + but increases the risk of over-fitting. Positive + values are interpreted as real values in mm, negative values + are interpreted as distance in voxels. smoothing_sigma_reference: int Adds a Gaussian smoothing to the reference image (the one being registered), with the sigma defined by the number. Positive @@ -325,11 +331,11 @@ def widget( registered), with the sigma defined by the number. Positive values are interpreted as real values in mm, negative values are interpreted as distance in voxels. - histogram_n_bins_floating: float + histogram_n_bins_floating: int Number of bins used for the generation of the histograms used for the calculation of Normalized Mutual Information on the floating image - histogram_n_bins_reference: float + histogram_n_bins_reference: int Number of bins used for the generation of the histograms used for the calculation of Normalized Mutual Information on the reference image @@ -404,9 +410,9 @@ def run(): freeform_n_steps, freeform_use_n_steps, bending_energy_weight, - -grid_spacing, - -smoothing_sigma_reference, - -smoothing_sigma_floating, + grid_spacing, + smoothing_sigma_reference, + smoothing_sigma_floating, histogram_n_bins_floating, histogram_n_bins_reference, debug=False, @@ -463,6 +469,7 @@ def run(): n_free_cpus, save_original_orientation=save_original_orientation, brain_geometry=brain_geometry.value, + debug=debug, ) logging.info("Calculating volumes of each brain area") diff --git a/brainreg/napari/util.py b/brainreg/napari/util.py index af19a0d..c8c4a52 100644 --- a/brainreg/napari/util.py +++ b/brainreg/napari/util.py @@ -40,30 +40,52 @@ def initialise_brainreg(atlas_key, data_orientation_key, voxel_sizes): ) -def downsample_and_save_brain(img_layer, scaling): +def downsample_and_save_brain( + img_layer, + scaling, + anti_aliasing=True, + preserve_range=True, + mode="constant", +): first_frame_shape = skimage.transform.rescale( - img_layer.data[0], scaling[1:2], anti_aliasing=True + img_layer.data[0], + scaling[1:2], + anti_aliasing=anti_aliasing, + preserve_range=preserve_range, + mode=mode, ).shape preallocated_array = np.empty( (img_layer.data.shape[0], first_frame_shape[0], first_frame_shape[1]) ) - print("downsampling data in x, y") + print("Downsampling data in x, y") for i, img in tqdm(enumerate(img_layer.data)): down_xy = skimage.transform.rescale( - img, scaling[1:2], anti_aliasing=True + img, + scaling[1:2], + anti_aliasing=anti_aliasing, + preserve_range=preserve_range, + mode=mode, ) preallocated_array[i] = down_xy first_ds_frame_shape = skimage.transform.rescale( - preallocated_array[:, :, 0], [scaling[0], 1], anti_aliasing=True + preallocated_array[:, :, 0], + [scaling[0], 1], + anti_aliasing=anti_aliasing, + preserve_range=preserve_range, + mode=mode, ).shape downsampled_array = np.empty( (first_ds_frame_shape[0], first_frame_shape[0], first_frame_shape[1]) ) - print("downsampling data in z") + print("Downsampling data in z") for i, img in tqdm(enumerate(preallocated_array.T)): down_xyz = skimage.transform.rescale( - img, [1, scaling[0]], anti_aliasing=True + img, + [1, scaling[0]], + anti_aliasing=anti_aliasing, + preserve_range=preserve_range, + mode=mode, ) downsampled_array[:, :, i] = down_xyz.T return downsampled_array