forked from CCSI-Toolset/DeeperFluids
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
99 lines (82 loc) · 3.61 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import deeper_fluids.grid as grid
import deeper_fluids.latent_vectors as latent_vectors
import deeper_fluids.LIN as LIN
import deeper_fluids.IA as IA
import deeper_fluids.metric as metric
import deeper_fluids.End2End_Finetune as E2E
from args import (parse_arguments, hash_latent_vector_hyperparams,
hash_lin_hyperparams, get_args_from_file)
def main():
ARGS = parse_arguments()
if ARGS.run_from_hash:
config_folder = os.path.join(ARGS.meta_outputDir, ARGS.run_from_hash)
iter_zero_folder = os.path.join(config_folder, str(0))
path_to_hyperparams_of_this_config = os.path.join(iter_zero_folder, 'hyperparameters.log')
ARGS = get_args_from_file(path_to_hyperparams_of_this_config)
print(ARGS)
print('\nSuccessfully loaded the above args from the given hparam hash')
if ARGS.run_display_output_locations:
print(ARGS.meta_outputDir + 'lv_' + hash_latent_vector_hyperparams(ARGS))
print(ARGS.meta_outputDir + 'lin_' + hash_lin_hyperparams(ARGS))
exit()
if ARGS.run_ground_truth_IA:
IA.create_from_args(ARGS)
exit()
#set the GPU
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"]= ARGS.meta_gpuIDs
# build or select grid
print('*************************\nBuilding grid (if not done yet)')
grid_made = grid.create_from_args(ARGS) # build grid with specified args unless it already exists
if grid_made:
# learn or select latent vectors
print('*************************\nBuilding latents (if not done yet)')
latents_made = latent_vectors.create_from_args(ARGS) # learns SVD/AE latent vectors if those with specified args don't already exist
if ARGS.run_LVM_IA_only:
IA.create_from_args(ARGS)
return 1
else:
print('\nYou need to make the grid for this config!\n')
return 0
if latents_made:
# learn or select LIN
print('*************************\nBuilding LIN (if not done yet)')
LIN_made = LIN.create_from_args(ARGS)
else:
print('\nYou need to make the latent vectors for this config!\n')
return 0
if LIN_made:
# compute IA of LIN simulations
print('*************************\nComputing IA (if not done yet)')
IAs_made = IA.create_from_args(ARGS)
else:
print('\nYou need to make the LIN for this config!\n')
return 0
if IAs_made:
# compare IAs to STAR-CCM IAs
print('*************************\nComputing metrics (e.g. IA error w.r.t. STAR-CCM and speedup)')
metric.create_from_args(ARGS)
else:
print('\nYou need to make the IAs for this config!\n')
return 0
if ARGS.e2e_finetune:
print('*************************\nFinetuning LIN using e2e training (if not done yet)')
e2e_LIN_finetuned = E2E.create_from_args(ARGS)
if e2e_LIN_finetuned:
# compute IA of LIN simulations
print('*************************\nComputing IA (if not done yet)')
IAs_made = IA.create_from_args(ARGS, e2e=True)
else:
print('\nYou need to finetune the LIN for this config!\n')
return 0
if IAs_made:
# compare IAs to STAR-CCM IAs
print('*************************\nGetting IA error w.r.t. STAR-CCM')
metric.create_from_args(ARGS, e2e=True)
else:
print('\nYou need to make the IAs for this config!\n')
return 0
print('\nAll experiments completed successfully.\nExiting...')
if __name__ == '__main__':
main()