forked from CCSI-Toolset/DeeperFluids
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
386 lines (331 loc) · 15.2 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse, sys, os, yaml, hashlib
from configs import parser as _parser
def hash_e2e_hyperparams(args):
# get short, string representation of hyperparameter settings
relevant_hyperparams = [arg_name+'=='+str(args.__dict__[arg_name]) for arg_name in sorted(args.__dict__)
if arg_affects_e2e_results(args, arg_name)]
hash_str = hashlib.md5(';'.join(relevant_hyperparams).encode('utf-8')).hexdigest()
return hash_str
def hash_lin_hyperparams(args):
# get short, string representation of hyperparameter settings
relevant_hyperparams = [arg_name+'=='+str(args.__dict__[arg_name]) for arg_name in sorted(args.__dict__)
if arg_affects_lin_results(args, arg_name)]
hash_str = hashlib.md5(';'.join(relevant_hyperparams).encode('utf-8')).hexdigest()
return hash_str
def hash_latent_vector_hyperparams(args):
# get short, string representation of hyperparameter settings
relevant_hyperparams = [arg_name+'=='+str(args.__dict__[arg_name]) for arg_name in sorted(args.__dict__)
if arg_affects_latent_vector_results(args, arg_name)]
hash_str = hashlib.md5(';'.join(relevant_hyperparams).encode('utf-8')).hexdigest()
return hash_str
def get_args_from_file(file):
# load args from a file created by write_args_to_file
with open(file, 'r') as f:
d = f.readlines()
parse_this = []
for a in d:
if a.split(':')[0].strip() == 'lin_hidden_layers':
parse_this += ['--' + a.split(':')[0].strip(), a.split(':')[1].strip()[1:-1]]
else:
parse_this += ['--' + a.split(':')[0].strip(), a.split(':')[1].strip()]
return get_parser().parse_args(parse_this)
def write_args_to_file(args, file):
# write values of all args to a file
with open(file, 'w') as f:
for arg_name in sorted(args.__dict__):
f.write(arg_name + ': ' + str(args.__dict__[arg_name]) + '\n')
def arg_affects_latent_vector_results(args, arg_name):
'''
check if arg will be used by hash_latent_vector_hyperparams to differentiate experiments
'''
# a new config will only affect results if the arguments it contains are different from another config's args,
# so none of these should affect lv results
if (arg_name in ['meta_gpuIDs', 'meta_workers', 'meta_config', 'meta_dataDir', 'meta_outputDir'] or
arg_name[:3] == 'lin' or
arg_name[:3] == 'e2e' or
arg_name[:3] == 'run'):
return False
# if a new arg is added after experiment X was run, we don't want experiment X's hash to change.
# we ensure that here, by returning False for args that have a value of None, and by following these rules:
# 1) ALWAYS USE "None" AS A DEFAULT FOR NEWLY ADDED ARGUMENTS (we also NEVER USE "None" AS A DEFAULT FOR THE ORIGINAL ARGS to ensure that hashes are based on all variables)
# 2) user must integrate new args such that their default value (None) does not affect the operation of the program at all!
# (note: "meta_config" is the only original arg with a default of None, but it has required=True, so it can't be None)
if args.__dict__[arg_name] is None: # arg=None iff it's a new arg that isn't affecting results (see discussion above)
return False
if arg_name == 'lv_ConfigIter': # replicates will be stored in their own subfolder of the hashed path
return False # so we return False
else:
return True
def arg_affects_lin_results(args, arg_name):
'''
check if arg will be used by hash_LIN_hyperparams to differentiate experiments
'''
# a new config will only affect results if the arguments it contains are different from another config's args,
# so none of these should affect LIN results
if (arg_name in ['meta_gpuIDs', 'meta_workers', 'meta_config', 'meta_dataDir', 'meta_outputDir'] or
arg_name[:3] == 'run' or
arg_name[:3] == 'e2e'):
return False
# see arg_affects_latent_vector_results for a discussion of this logic
if args.__dict__[arg_name] is None:
return False
if arg_name == 'lin_ConfigIter': # replicates will be stored in their own subfolder of the hashed path
return False # so we return False
else:
return True
def arg_affects_e2e_results(args, arg_name):
'''
check if arg will be used by hash_e2e_hyperparams to differentiate experiments
'''
# a new config will only affect results if the arguments it contains are different from another config's args,
# so none of these should affect e2e finetuning results
if (arg_name in ['meta_gpuIDs', 'meta_workers', 'meta_config', 'meta_dataDir', 'meta_outputDir'] or
arg_name[:3] == 'run'):
return False
# see arg_affects_latent_vector_results for a discussion of this logic
if args.__dict__[arg_name] is None:
return False
if arg_name == 'e2e_ConfigIter': # replicates will be stored in their own subfolder of the hashed path
return False # so we return False
else:
return True
def str2bool(v):
# converts string args to bool type
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def strWithNone(v):
# converts string args to None if string is 'None'
if isinstance(v, str) and v!='None':
return v
elif v=='None':
return None
else:
raise argparse.ArgumentTypeError('String value expected.')
def get_parser():
# based on https://github.com/RAIVNLab/STR
# creates a parser with hyperparameters set to particular defaults
# DO NOT CHANGE DEFAULTS
# doing so would cause config files that rely on the original defaults to run with different settings
parser = argparse.ArgumentParser(description="PyTorch Experiments for Deep Fluids Ablation Study")
# General Config
parser.add_argument(
"--meta_config", help="Config file to use (see configs dir)", default=None, required=True
)
parser.add_argument(
"--meta_outputDir", help="directory for holding processed data, logs, etc.",
default="/home/DeeperFluids/data/"
)
parser.add_argument(
"--meta_data", default="PNNL"
)
parser.add_argument(
"--meta_dataDir", help="path to raw dataset directory", default="/home/DeeperFluids/data/raw/"
)
parser.add_argument(
"--meta_channel", default=2, type=int, metavar="N", help="data channel'",
)
parser.add_argument(
"--meta_latent_dimension", default=1024, type=int
)
parser.add_argument(
"--meta_testSplit", default=0.2, type=float
)
parser.add_argument(
"--meta_workers", default=8, type=int, metavar="N", help="number of data loading workers (default: 8)",
)
parser.add_argument(
"--meta_gpuIDs", default='0,1,2,3', help="Which GPUs to use. Leave blank for none",
)
parser.add_argument(
"--meta_simLength", default=None, type=strWithNone, metavar="N",
help="number of timesteps, e.g. 500",
)
parser.add_argument(
"--meta_sims", default=None, type=strWithNone, metavar="N",
help="number of simulations, e.g. 50",
)
parser.add_argument(
"--meta_STARCCM_IA", help="folder that holds STARCCM IA files; each file should be named 'NNN_interfaceareamonitor.csv'"
" where NNN gives the simulation number; e.g. 010 for the tenth simulation.",
default=None, type=strWithNone
)
# grid creation
parser.add_argument(
"--meta_gridSize", default=128, type=int, metavar="N",
help="128 will make 128*128 grid, 512 makes 512*512, etc."
" use meta_Ny_over_Nx arg to make a rectangular grid, meta_gridSize becomes width",
)
parser.add_argument(
"--meta_Ny_over_Nx", default=None, type=strWithNone, metavar="N",
help="desired height divided by width for grid",
)
# latent creation
parser.add_argument(
"--lv_ConfigIter", default=0, type=int, metavar="N", help="replicate number for latent model training",
)
parser.add_argument(
"--lv_max_epochs", default=1000, type=int, metavar="N", help="max number of total epochs to run",
)
parser.add_argument(
"--lv_Model", default="ConvDeconvFactor2", help="ConvDeconvFactor2, SVD, etc.",
)
parser.add_argument(
"--lv_LR", default=0.0001, type=float, help="initial learning rate for LVM"
)
parser.add_argument(
"--lv_batch_size", default=128, type=int, help="batch size for LVM"
)
parser.add_argument(
"--lv_filters", default=128, type=int, help="number of channels in first layer of LVM"
)
parser.add_argument(
"--lv_num_conv", default=4, type=int, help="LVM hyperparameter not currently used"
)
parser.add_argument(
"--lv_repeat", default=3, type=int, metavar="N", help="number of conv layers in encoder - 1"
)
parser.add_argument(
"--lv_patience", default=3, type=int, help="number of epochs of no improvement in loss before reducing LR"
)
parser.add_argument(
"--lv_doJacobian", type=str2bool, default=False, help="adds to loss the L1 norm ||grad(vel) - grad(predicted vel)||"
)
parser.add_argument(
"--lv_createStreamFcn", type=str2bool, default=False, help="make decoder approximate stream function, for incompressible flow predictions"
)
parser.add_argument(
"--lv_skip_connection", type=str2bool, default=False, help="use skip connections in LVM"
)
parser.add_argument(
"--lv_stack", type=str2bool, default=False, help="LVM hyperparameter not currently used"
)
parser.add_argument(
"--lv_Act", default="nn.ELU()", help="activation to use in LVM, used as a key for act_dict in models.py"
)
parser.add_argument(
"--lv_Loss", default="L2_relative_loss", help="loss function to use in LVM"
)
parser.add_argument(
"--lv_use_sigmoid_output_layer", type=str2bool, default=True, help="force outputs to (0,1) with sigmoid layer"
)
parser.add_argument(
"--lv_DEBUG", type=str2bool, default=False, help="only run with a subset of data"
)
parser.add_argument(
"--lv_standardize", type=str2bool, default=False, help="standardizes the data for model training"
)
parser.add_argument(
"--lv_update_SVD", type=strWithNone, default=None, help="allow LVM from SVD of training data to be tuned"
)
# LIN creation
parser.add_argument(
"--lin_ConfigIter", default=0, type=int, metavar="N", help="replicate number for LIN model training"
)
parser.add_argument(
"--lin_max_epochs", default=1000, type=int, metavar="N", help="max number of total epochs to run",
)
parser.add_argument(
"--lin_Model", default="ARC", help="ARC, MLP, etc.",
)
parser.add_argument(
"--lin_LR", default=0.001, type=float, help="learning rate for LIN"
)
parser.add_argument(
"--lin_window", default=499, type=int, help="number of steps to rollout for during training"
)
parser.add_argument(
"--lin_memory", default=6, type=int, help="number of past timesteps to use as input to LIN"
)
parser.add_argument(
"--lin_batch_size", default=1, type=int, help="LIN batch size"
)
parser.add_argument(
"--lin_Loss", default="L2_relative_vector_loss", help="loss function for LIN"
)
parser.add_argument(
"--lin_patience", default=3, type=int, help="number of epochs of no improvement in LIN loss before LR decrease"
)
parser.add_argument(
"--lin_DEBUG", type=str2bool, default=False, help="run with reduced training set size"
)
parser.add_argument(
"--lin_normalize", type=str2bool, default=True, help="normalizes the data for model training"
)
parser.add_argument(
"--lin_Act", default="nn.ELU()", help="LIN model activation function, used as a key for act_dict in models.py"
)
parser.add_argument(
"--lin_hidden_layers", default=[128, 128, 128],
type=lambda s: [int(item) for item in s.split(',')], help="number of hidden layers in LIN"
)
parser.add_argument(
"--lin_end_to_end_training", type=str2bool, default=False, help="train LIN jointly with LVM"
)
parser.add_argument(
"--lin_train_on_unnormalized", type=str2bool, default=False, help="train on unnormalized latent vectors"
)
# End2End finetuning of LIN
parser.add_argument(
"--e2e_finetune", type=str2bool, default=False, help="apply fine-tuning of LIN after it is trained"
)
parser.add_argument(
"--e2e_ConfigIter", default=0, type=int, metavar="N", help="replicate number for e2e finetuning"
)
parser.add_argument(
"--e2e_max_epochs", default=1000, type=int, metavar="N", help="max number of total epochs to run",
)
parser.add_argument(
"--e2e_LR", default=1e-6, type=float, help="learning rate to use during fine tuning"
)
parser.add_argument(
"--e2e_window", default=499, type=int, help="number of steps to roll out for during training"
)
parser.add_argument(
"--e2e_patience", default=5, type=int, help="number of epochs of no improvement in loss before LR decrease"
)
parser.add_argument(
"--e2e_batch_size", default=None, type=strWithNone, help="E2E model batch size"
)
# Run particular components of the code
parser.add_argument(
"--run_display_output_locations", type=strWithNone, default=None, help="print the location/hashes of outputs associated with the given hyperparameters then exit"
)
parser.add_argument(
"--run_ground_truth_IA", type=strWithNone, default=None, help='compute and save the ground truth IAs'
)
parser.add_argument(
"--run_LVM_IA_only", type=strWithNone, default=None, help="compute IA associated with LVM reconstructions"
)
parser.add_argument(
"--run_from_hash", type=strWithNone, default=None, help="run experiments.py using arguments found in a specified (preivously started) experiment's output folder"
)
return parser
def parse_arguments():
parser = get_parser()
args = parser.parse_args()
get_config(args)
return args
def get_config(args):
# get commands from command line
override_args = _parser.argv_to_vars(sys.argv)
# load yaml file
yaml_txt = open('configs/'+args.meta_config).read()
# override args
loaded_yaml = yaml.load(yaml_txt, Loader=yaml.FullLoader)
for v in override_args:
loaded_yaml[v] = getattr(args, v)
print(f"=> Reading YAML config from {args.meta_config}")
args.__dict__.update(loaded_yaml)
# confirm hash can be recreated from written args
print(args.__dict__)
hash_str = hash_lin_hyperparams(args)
write_args_to_file(args, hash_str + '.txt')
test_args = get_args_from_file(hash_str + '.txt')
assert hash_str == hash_lin_hyperparams(test_args), 'hash of args failed'
os.remove(hash_str + '.txt')