-
Notifications
You must be signed in to change notification settings - Fork 551
/
math_helpers.py
1165 lines (960 loc) · 46.7 KB
/
math_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2023 Boston Dynamics, Inc. All rights reserved.
#
# Downloading, reproducing, distributing or otherwise using the SDK Software
# is subject to the terms and conditions of the Boston Dynamics Software
# Development Kit License (20191101-BDSDK-SL).
import math
import numbers
import numpy
from deprecated.sphinx import deprecated
from bosdyn.api import geometry_pb2
def recenter_value_mod(value, center, amplitude):
new_value = (value - center) % amplitude + center
if new_value >= (center + 0.5 * amplitude):
new_value -= amplitude
elif new_value < (center - 0.5 * amplitude):
new_value += amplitude
return new_value
def recenter_angle_mod(theta, center):
return recenter_value_mod(theta, center, 2 * math.pi)
def angle_diff(a1, a2):
return recenter_angle_mod(a1 - a2, 0.0)
def angle_diff_degrees(a1, a2):
return recenter_value_mod(a1 - a2, 0.0, 360.0)
class Vec2(object):
"""Class representing a two-dimensional vector."""
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return 'X: %0.3f Y: %0.3f' % (self.x, self.y)
def __neg__(self):
return Vec2(-self.x, -self.y)
def __mul__(self, other):
if not isinstance(other, numbers.Number):
raise TypeError("Can't multiply types %s and %s." % (type(self), type(other)))
return Vec2(self.x * other, self.y * other)
def __rmul__(self, lhs):
return self * lhs
def __truediv__(self, other):
if not isinstance(other, numbers.Number):
raise TypeError("Can't divide types %s and %s." % (type(self), type(other)))
return Vec2(self.x / other, self.y / other)
# Included for python 2 compatibility
def __div__(self, other):
return self.__truediv__(other)
def __add__(self, other):
if not isinstance(other, Vec2):
raise TypeError("Can't add types %s and %s." % (type(self), type(other)))
return Vec2(self.x + other.x, self.y + other.y)
def __sub__(self, other):
return self + (-other)
def __setitem__(self, idx, data):
# pylint: disable=no-else-return
if idx == 0:
self.x = data
return
elif idx == 1:
self.y = data
return
raise IndexError("Invalid index {}".format(idx))
def __getitem__(self, idx):
# pylint: disable=no-else-return
if idx == 0:
return self.x
elif idx == 1:
return self.y
raise IndexError("Invalid index {}".format(idx))
def length(self):
return math.sqrt(self.x * self.x + self.y * self.y)
def to_proto(self):
"""Converts the math_helpers.Vec2 into an output of the protobuf geometry_pb2.Vec2."""
return geometry_pb2.Vec2(x=self.x, y=self.y)
def dot(self, other):
if not isinstance(other, Vec2):
raise TypeError("Can't dot types %s and %s." % (type(self), type(other)))
return self.x * other.x + self.y * other.y
def cross(self, other):
if not isinstance(other, Vec2):
raise TypeError("Can't cross types %s and %s." % (type(self), type(other)))
return self.x * other.y - other.x * self.y
@staticmethod
def from_proto(proto):
"""Create a math_helpers.Vec2 from a geometry_pb2.Vec2 proto."""
return Vec2(proto.x, proto.y)
class Vec3(object):
"""Class representing a three-dimensional vector."""
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __str__(self):
return 'X: %0.3f Y: %0.3f Z: %0.3f' % (self.x, self.y, self.z)
def __neg__(self):
return Vec3(-self.x, -self.y, -self.z)
def __mul__(self, other):
if not isinstance(other, numbers.Number):
raise TypeError("Can't multiply types %s and %s." % (type(self), type(other)))
return Vec3(self.x * other, self.y * other, self.z * other)
def __rmul__(self, lhs):
return self * lhs
def __truediv__(self, other):
if not isinstance(other, numbers.Number):
raise TypeError("Can't divide types %s and %s." % (type(self), type(other)))
return Vec3(self.x / other, self.y / other, self.z / other)
# Included for python 2 compatibility
def __div__(self, other):
return self.__truediv__(other)
def __add__(self, other):
if not isinstance(other, Vec3):
raise TypeError("Can't add types %s and %s." % (type(self), type(other)))
return Vec3(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other):
return self + (-other)
def __setitem__(self, idx, data):
# pylint: disable=no-else-return
if idx == 0:
self.x = data
return
elif idx == 1:
self.y = data
return
elif idx == 2:
self.z = data
return
raise IndexError("Invalid index {}".format(idx))
def __getitem__(self, idx):
# pylint: disable=no-else-return
if idx == 0:
return self.x
elif idx == 1:
return self.y
elif idx == 2:
return self.z
raise IndexError("Invalid index {}".format(idx))
def length(self):
return math.sqrt(self.x * self.x + self.y * self.y + self.z * self.z)
def to_proto(self):
"""Converts the math_helpers.Vec3 into an output of the protobuf geometry_pb2.Vec3."""
return geometry_pb2.Vec3(x=self.x, y=self.y, z=self.z)
def to_numpy(self):
"""Converts the math_helpers.Vec3 into an output of numpy format."""
return numpy.array([self.x, self.y, self.z])
def dot(self, other):
if not isinstance(other, Vec3):
raise TypeError("Can't dot types %s and %s." % (type(self), type(other)))
return self.x * other.x + self.y * other.y + self.z * other.z
def cross(self, other):
if not isinstance(other, Vec3):
raise TypeError("Can't cross types %s and %s." % (type(self), type(other)))
return Vec3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z,
self.x * other.y - self.y * other.x)
@staticmethod
def from_proto(proto):
"""Create a math_helpers.Vec3 from a geometry_pb2.Vec3 proto."""
return Vec3(proto.x, proto.y, proto.z)
@staticmethod
def from_numpy(array):
"""Create a math_helpers.Vec3 from a numpy array."""
return Vec3(array[0], array[1], array[2])
class SE2Pose(object):
"""Class representing an SE2Pose with position and angle."""
def __init__(self, x, y, angle):
self.x = x
self.y = y
self.angle = angle
def __str__(self):
return 'position -- X: %0.3f Y: %0.3f Yaw: %0.1f deg' % (self.x, self.y,
math.degrees(self.angle))
@staticmethod
def flatten(se3pose):
"""
Flatten a given SE3Pose to an SE2Pose. This will lose height information
if the se3pose provided is not gravity aligned. The common gravity aligned
frames are odom, vision, and flat_body.
Inputs:
se3pose (math_helpers.SE3Pose)
Returns:
math_helpers.SE2Pose representing the flattened se3pose.
"""
x = se3pose.x
y = se3pose.y
angle = se3pose.rot.to_yaw()
return SE2Pose(x, y, angle)
def to_obj(self, proto):
"""Adds the math_helpers.SE2Pose properties into the geometry_pb2.SE2Pose 'proto'."""
proto.position.x = self.x
proto.position.y = self.y
proto.angle = self.angle
def to_proto(self):
"""Converts the math_helpers.SE2Pose into an output of the protobuf geometry_pb2.SE2Pose."""
return geometry_pb2.SE2Pose(position=geometry_pb2.Vec2(x=self.x, y=self.y),
angle=self.angle)
def inverse(self):
"""
Compute the inverse of the math_helpers.SE2Pose.
For example, if the SE(2) pose represented a_tform_b, then the inverse pose is b_tform_a.
Returns:
math_helpers.SE2Pose representing the inverse of the current SE(2) Pose.
"""
c = math.cos(self.angle)
s = math.sin(self.angle)
return SE2Pose(-self.x * c - self.y * s, self.x * s - self.y * c, -self.angle)
def mult(self, se2pose):
"""
Computes the multiplication between the current math_helpers.SE2Pose and the input se2pose.
For example, if the 'self' SE2Pose represents a_tform_b and the input se2pose represents b_tform_c,
then the output will represent the transform a_tform_c.
Inputs:
se2pose (math_helpers.se2pose)
Returns:
math_helpers.se2pose representing the multiplication of two SE(2) poses.
"""
rotation_matrix = self.to_rot_matrix()
rotated_pos = rotation_matrix.dot((se2pose.x, se2pose.y))
return SE2Pose(self.x + rotated_pos[0], self.y + rotated_pos[1],
recenter_angle_mod(self.angle + se2pose.angle, 0.0))
def __mul__(self, other):
"""Overrides the '*' symbol to compute the multiplication between two SE(2) poses,
or between an SE(2) pose and a Vec2"""
if isinstance(other, Vec2):
rotation_matrix = self.to_rot_matrix()
rotated_pos = rotation_matrix.dot((other.x, other.y))
return Vec2(self.x + rotated_pos[0], self.y + rotated_pos[1])
if isinstance(other, SE2Pose):
rotation_matrix = self.to_rot_matrix()
rotated_pos = rotation_matrix.dot((other.x, other.y))
return SE2Pose(self.x + rotated_pos[0], self.y + rotated_pos[1],
recenter_angle_mod(self.angle + other.angle, 0.0))
else:
raise TypeError("Can't multiply types %s and %s." % (type(self), type(other)))
def to_rot_matrix(self):
"""Returns the rotation matrix generate from the angle of the current SE(2) Pose."""
c = math.cos(self.angle)
s = math.sin(self.angle)
return numpy.array([[c, -s], [s, c]])
def to_matrix(self):
"""Returns the 3x3 matrix to transform a 2D point (in generalized coordinates)."""
c = math.cos(self.angle)
s = math.sin(self.angle)
return numpy.array([[c, -s, self.x], [s, c, self.y], [0, 0, 1]])
def to_adjoint_matrix(self):
"""This creates the adjoint matrix for the current SE2Pose.
The adjoint matrix can be used to change reference frames for a SE(2) velocity vector. For
example, if you have math_helpers.SE2Velocity velocity_in_frame_b, then the adjoint matrix
for the math_helpers.SE2Pose (representing a_tform_b) can be used as follows to transform
the velocity: velocity_in_frame_a = a_tform_b.to_adjoint_matrix() * velocity_in_frame_b
Returns:
a_adjoint_b (Numpy 3x3 matrix) representing the adjoint matrix for the SE2Pose.
"""
a_R_b = self.to_rot_matrix()
position_skew_mat = skew_matrix_2d(self.position)
a_adjoint_b = numpy.block([[a_R_b, position_skew_mat.T], [0, 0, 1]])
return a_adjoint_b
@property
def position(self):
"""Property to allow attribute access of the protobuf message field 'position' similar to
the geometry_pb2.SE2Pose for the math_helper.SE2Pose."""
return geometry_pb2.Vec2(x=self.x, y=self.y)
@staticmethod
def from_matrix(mat):
"""Extract SE2Pose from a 3x3 matrix"""
# Extract separately to get float type, instead of single-element matrix type.
x = mat[0, 2]
y = mat[1, 2]
angle = math.atan2(mat[1, 0], mat[0, 0])
print(x, y, angle)
return SE2Pose(x, y, angle)
@staticmethod
@deprecated(reason='Use from_proto instead.', version='3.1.0')
def from_obj(tform):
return SE2Pose.from_proto(tform)
@staticmethod
def from_proto(tform):
"""Create a math_helpers.SE2Pose from a geometry_pb2.SE2Pose proto."""
return SE2Pose(tform.position.x, tform.position.y, tform.angle)
def get_closest_se3_transform(self, height_z=0.0):
"""Compute the closest math_helpers.SE3Pose from the current math_helpers.SE2Pose."""
# Note that if the SE(2) pose is a transform from a non-gravity-aligned frame,
# then height information will be incorrect in the inflated SE(3) pose unless
# the correct height is passed into the function as height_z.
return SE3Pose(x=self.x, y=self.y, z=height_z, rot=Quat.from_yaw(self.angle))
class SE2Velocity(object):
"""Class representing an SE2Velocity with linear velocity and angular velocity."""
def __init__(self, x, y, angular):
self.linear_velocity_x = float(x)
self.linear_velocity_y = float(y)
self.angular_velocity = float(angular)
def __str__(self):
return 'Linear velocity -- X: %0.3f Y: %0.3f Angular velocity -- %0.3f ' % (
self.linear_velocity_x, self.linear_velocity_y, self.angular_velocity)
def to_obj(self, proto):
"""Adds the math_helpers.SE2Velocity properties into the geometry_pb2.SE2Velocity 'proto'."""
proto.linear.x = self.linear_velocity_x
proto.linear.y = self.linear_velocity_y
proto.angular = self.angular_velocity
def to_proto(self):
"""Converts the math_helpers.SE2Velocity into an output of the protobuf geometry_pb2.SE2Velocity."""
return geometry_pb2.SE2Velocity(
linear=geometry_pb2.Vec2(x=self.linear_velocity_x, y=self.linear_velocity_y),
angular=self.angular_velocity)
def to_vector(self):
"""Creates a 3x1 velocity vector as a numpy array."""
# Create a 3x1 vector of [x_d, y_d, r_d]
return numpy.array([self.linear_velocity_x, self.linear_velocity_y,
self.angular_velocity]).reshape((3, 1))
@staticmethod
def from_vector(se2_vel_vector):
"""Converts a 3x1 velocity vector (of either a numpy array or a list) into a math_helpers.SE2Velocity object."""
if isinstance(se2_vel_vector, list):
if len(se2_vel_vector) != 3:
# Must have 3 elements to be a complete SE2Velocity
print("Velocity list must have 3 elements. The input has the wrong dimension of: " +
str(len(se2_vel_vector)))
return None
else:
return SE2Velocity(x=se2_vel_vector[0], y=se2_vel_vector[1],
angular=se2_vel_vector[2])
if isinstance(se2_vel_vector, numpy.ndarray):
if se2_vel_vector.shape[0] != 3:
# Must have 3 elements to be a complete SE2Velocity
print(
"Velocity numpy array must have 3 elements. The input has the wrong dimension of: "
+ str(se2_vel_vector.shape[0]))
return None
else:
return SE2Velocity(x=se2_vel_vector[0], y=se2_vel_vector[1],
angular=se2_vel_vector[2])
@property
def linear(self):
"""Property to allow attribute access of the protobuf message field 'linear' similar to the geometry_pb2.SE2Velocity
for the math_helper.SE2Velocity."""
return geometry_pb2.Vec2(x=self.linear_velocity_x, y=self.linear_velocity_y)
@property
def angular(self):
"""Property to allow attribute access of the protobuf message field 'angular' similar to the geometry_pb2.SE2Velocity
for the math_helper.SE2Velocity."""
return self.angular_velocity
@staticmethod
@deprecated(reason='Use from_proto instead.', version='3.1.0')
def from_obj(vel):
return SE2Velocity.from_proto(vel)
@staticmethod
def from_proto(vel):
"""Create a math_helpers.SE2Velocity from a geometry_pb2.SE2Velocity proto."""
return SE2Velocity(x=vel.linear.x, y=vel.linear.y, angular=vel.angular)
class SE3Velocity(object):
"""Class representing an SE3Velocity with linear velocity and angular velocity."""
def __init__(self, lin_x, lin_y, lin_z, ang_x, ang_y, ang_z):
self.linear_velocity_x = float(lin_x)
self.linear_velocity_y = float(lin_y)
self.linear_velocity_z = float(lin_z)
self.angular_velocity_x = float(ang_x)
self.angular_velocity_y = float(ang_y)
self.angular_velocity_z = float(ang_z)
def __str__(self):
return 'Linear velocity -- X: %0.3f Y: %0.3f Z: %0.3f Angular velocity -- X: %0.3f Y: %0.3f Z: %0.3f' % (
self.linear_velocity_x, self.linear_velocity_y, self.linear_velocity_z,
self.angular_velocity_x, self.angular_velocity_y, self.angular_velocity_z)
def to_obj(self, proto):
"""Adds the math_helpers.SE3Velocity properties into the geometry_pb2.SE3Velocity 'proto'."""
proto.linear.x = self.linear_velocity_x
proto.linear.y = self.linear_velocity_y
proto.linear.z = self.linear_velocity_z
proto.angular.x = self.angular_velocity_x
proto.angular.y = self.angular_velocity_y
proto.angular.z = self.angular_velocity_z
def to_proto(self):
"""Converts the math_helpers.SE3Velocity into an output of the protobuf geometry_pb2.SE3Velocity."""
return geometry_pb2.SE3Velocity(
linear=geometry_pb2.Vec3(x=self.linear_velocity_x, y=self.linear_velocity_y,
z=self.linear_velocity_z),
angular=geometry_pb2.Vec3(x=self.angular_velocity_x, y=self.angular_velocity_y,
z=self.angular_velocity_z))
def to_vector(self):
"""Creates a 6x1 velocity vector as a numpy array."""
# Create a vector [x_d, y_d, z_d, r_x_d, r_y_d, r_z_d] of dimensions 6x1
return numpy.array([
self.linear_velocity_x, self.linear_velocity_y, self.linear_velocity_z,
self.angular_velocity_x, self.angular_velocity_y, self.angular_velocity_z
]).reshape((6, 1))
@property
def linear(self):
"""Property to allow attribute access of the protobuf message field 'linear' similar to the geometry_pb2.SE3Velocity
for the math_helper.SE3Velocity."""
return geometry_pb2.Vec3(x=self.linear_velocity_x, y=self.linear_velocity_y,
z=self.linear_velocity_z)
@property
def angular(self):
"""Property to allow attribute access of the protobuf message field 'angular' similar to the geometry_pb2.SE3Velocity
for the math_helper.SE3Velocity."""
return geometry_pb2.Vec3(x=self.angular_velocity_x, y=self.angular_velocity_y,
z=self.angular_velocity_z)
@staticmethod
@deprecated(reason='Use from_proto instead.', version='3.1.0')
def from_obj(vel):
return SE3Velocity.from_proto(vel)
@staticmethod
def from_proto(vel):
"""Create a math_helpers.SE3Velocity from a geometry_pb2.SE3Velocity proto."""
return SE3Velocity(lin_x=vel.linear.x, lin_y=vel.linear.y, lin_z=vel.linear.z,
ang_x=vel.angular.x, ang_y=vel.angular.y, ang_z=vel.angular.z)
@staticmethod
def from_vector(se3_vel_vector):
"""Converts a 6x1 velocity vector (of either a numpy array or a list) into a math_helpers.SE3Velocity object."""
if isinstance(se3_vel_vector, list):
if len(se3_vel_vector) != 6:
# Must have 6 elements to be a complete SE3Velocity
print("Velocity list must have 6 elements. The input has the wrong dimension of: " +
str(len(se3_vel_vector)))
return None
else:
return SE3Velocity(lin_x=se3_vel_vector[0], lin_y=se3_vel_vector[1],
lin_z=se3_vel_vector[2], ang_x=se3_vel_vector[3],
ang_y=se3_vel_vector[4], ang_z=se3_vel_vector[5])
if isinstance(se3_vel_vector, numpy.ndarray):
if se3_vel_vector.shape[0] != 6:
# Must have 6 elements to be a complete SE3Velocity
print(
"Velocity numpy array must have 6 elements. The input has the wrong dimension of: "
+ str(se3_vel_vector.shape[0]))
return None
else:
return SE3Velocity(lin_x=se3_vel_vector[0], lin_y=se3_vel_vector[1],
lin_z=se3_vel_vector[2], ang_x=se3_vel_vector[3],
ang_y=se3_vel_vector[4], ang_z=se3_vel_vector[5])
class SE3Pose(object):
"""Class representing an SE3Pose with position and rotation."""
def __init__(self, x, y, z, rot):
self.x = x
self.y = y
self.z = z
# Expect the declaration of math_helpers.SE3Pose to pass a math_helpers.Quat, however we will convert
# a protobuf Quaternion into the math_helpers object as well.
if isinstance(rot, geometry_pb2.Quaternion):
rot = Quat.from_proto(rot)
self.rot = rot
def __str__(self):
return 'position -- X: %0.3f Y: %0.3f Z: %0.3f rotation -- %s' % (self.x, self.y, self.z,
str(self.rot))
def __iter__(self):
return iter([self.x, self.y, self.z, self.rot.w, self.rot.x, self.rot.y, self.rot.z])
@staticmethod
@deprecated(reason='Use from_proto instead.', version='3.1.0')
def from_obj(tform):
return SE3Pose.from_proto(tform)
@staticmethod
def from_proto(tform):
"""Create a math_helpers.SE3Pose from a geometry_pb2.SE3Pose proto."""
if tform.HasField('rotation'):
quat = Quat.from_proto(tform.rotation)
else:
# Create the identity quaternion if no rotation is provided in the SE(3) pose.
quat = Quat()
return SE3Pose(tform.position.x, tform.position.y, tform.position.z, quat)
@staticmethod
def from_se2(tform, z=0):
return SE3Pose(tform.x, tform.y, z, Quat.from_yaw(tform.angle))
def to_obj(self, proto):
"""Adds the math_helpers.SE3Pose properties into the geometry_pb2.SE3Pose 'proto'."""
proto.position.x = self.x
proto.position.y = self.y
proto.position.z = self.z
self.rot.to_obj(proto.rotation)
def to_proto(self):
"""Converts the math_helpers.SE3Pose into an output of the protobuf geometry_pb2.SE3Pose."""
return geometry_pb2.SE3Pose(
position=geometry_pb2.Vec3(x=self.x, y=self.y, z=self.z),
rotation=geometry_pb2.Quaternion(w=self.rot.w, x=self.rot.x, y=self.rot.y,
z=self.rot.z))
def inverse(self):
"""
Compute the inverse of the math_helpers.SE3Pose.
For example, if the SE(3) pose represented a_tform_b, then the inverse pose is b_tform_a.
Returns:
math_helpers.SE3Pose representing the inverse of the current SE(3) Pose.
"""
inv_rot = self.rot.inverse()
(x, y, z) = inv_rot.transform_point(self.x, self.y, self.z)
return SE3Pose(-x, -y, -z, inv_rot)
def transform_point(self, x, y, z):
"""
Compute the transformation (translation and rotation) of a (x,y,z) vector using the
current SE(3) pose.
Returns:
tuple (size 3) representing the transformed coordinate.
"""
(out_x, out_y, out_z) = self.rot.transform_point(x, y, z)
return (out_x + self.x, out_y + self.y, out_z + self.z)
def transform_vec3(self, vec3):
"""
Compute the transformation (translation and rotation) of a (x,y,z) vector using the
current SE(3) pose.
Returns:
Vec3 representing the transformed coordinate.
"""
(out_x, out_y, out_z) = self.rot.transform_point(vec3.x, vec3.y, vec3.z)
return geometry_pb2.Vec3(x=out_x + self.x, y=out_y + self.y, z=out_z + self.z)
def transform_cloud(self, points):
"""
Compute the transformation (translation and rotation) of multiple vector/points using the
current math_helpers.SE3Pose.
Inputs:
points (Nx3 numpy matrix) representing a set of (x,y,z) points to be transformed
Returns:
Nx3 numpy matrix of the points after they are transformed with the current math_helpers.SE3Pose.
"""
return SE3Pose.transform_cloud_from_matrix(self.to_matrix(), points)
@staticmethod
def transform_cloud_from_matrix(transform, points):
"""
Compute the transformation (translation and rotation) of multiple vector/points using the
input SE(3) pose.
Inputs:
transform (4x4 numpy matrix) representing the SE3Pose to be used to transform.
points (Nx3 numpy matrix) representing a set of (x,y,z) points to be transformed
Returns:
Nx3 numpy matrix of the points after they are transformed.
"""
rot = transform[0:3, 0:3]
trans = transform[0:3, 3]
return (numpy.dot(points, rot.T) + trans)
def to_matrix(self):
"""Returns the 4x4 matrix to transform a 3D point (in generalized coordinates)."""
ret = numpy.eye(4)
ret[0:3, 0:3] = self.rot.to_matrix()
ret[0:3, 3] = [self.x, self.y, self.z]
return ret
def mult(self, se3pose):
"""
Computes the multiplication between the current math_helpers.SE3Pose and the input se3pose.
For example, if the 'self' SE3Pose represents a_tform_b and the input se3pose represents b_tform_c,
then the output will represent the transform a_tform_c.
Inputs:
se3pose (math_helpers.SE3Pose)
Returns:
math_helpers.SE3Pose representing the multiplication of two SE(3) poses.
"""
(x, y, z) = self.rot.transform_point(se3pose.x, se3pose.y, se3pose.z)
return SE3Pose(self.x + x, self.y + y, self.z + z, self.rot.mult(se3pose.rot))
def __mul__(self, other):
"""Overrides the '*' symbol to compute the multiplication between two SE(3) poses,
or between an SE(3) pose and a Vec3."""
if isinstance(other, Vec3):
(x, y, z) = self.transform_point(other.x, other.y, other.z)
return Vec3(x, y, z)
if isinstance(other, SE3Pose):
(x, y, z) = self.rot.transform_point(other.x, other.y, other.z)
return SE3Pose(self.x + x, self.y + y, self.z + z, self.rot.mult(other.rot))
else:
raise TypeError("Can't multiply types %s and %s." % (type(self), type(other)))
@property
def position(self):
"""Property to allow attribute access of the protobuf message field 'position' similar to the geometry_pb2.SE3Pose
for the math_helper.SE3Pose."""
return geometry_pb2.Vec3(x=self.x, y=self.y, z=self.z)
@property
def rotation(self):
"""Property to allow attribute access of the protobuf message field 'rotation' similar to the geometry_pb2.SE3Pose
for the math_helper.SE3Pose."""
return self.rot
@staticmethod
def from_matrix(mat):
"""Extract math_helpers.SE3Pose from a 4x4 matrix."""
x, y, z = mat[0:3, 3]
rot = Quat.from_matrix(mat[0:3, 0:3])
return SE3Pose(x, y, z, rot)
@staticmethod
def from_identity():
"""Create a math_helpers.SE3Pose representing the identity SE(3) pose."""
return SE3Pose(0, 0, 0, Quat())
def get_translation(self):
"""Returns a 3x1 numpy array representing the translation only of the current SE3Pose."""
return numpy.array([self.x, self.y, self.z])
def to_adjoint_matrix(self):
"""This creates the adjoint matrix for the current SE3Pose.
The adjoint matrix can be used to change reference frames for a SE(3) velocity vector. For
example, if you have math_helpers.SE3Velocity velocity_in_frame_b, then the adjoint matrix
for the math_helpers.SE3Pose (representing a_tform_b) can be used as follows to transform
the velocity: velocity_in_frame_a = a_tform_b.to_adjoint_matrix() * velocity_in_frame_b
Returns:
a_adjoint_b (Numpy 6x6 matrix) representing the adjoint matrix for the SE3Pose.
"""
a_R_b = self.rot.to_matrix()
position_skew_mat = skew_matrix_3d(self.position)
mat = numpy.matmul(position_skew_mat, a_R_b)
a_adjoint_b = numpy.block([[a_R_b, mat], [numpy.zeros((3, 3)), a_R_b]])
return a_adjoint_b
def get_closest_se2_transform(self):
"""Compute the closest math_helpers.SE2Pose from the current math_helpers.SE3Pose."""
# For a transform a_T_b, the pose_frame_name represents "frame A". This must be a gravity
# aligned frame, either "vision", "odom", or "flat_body" to be safely converted from
# an SE3Pose to an SE2Pose with minimal loss of height information.
return SE2Pose.flatten(self)
@staticmethod
def interp(a, b, fraction):
"""
Performs a blend of two SE3Poses. Out = a * (1 - fraction) + b * fraction
Args:
a(SE3Pose): Lower blend input.
b(SE3Pose): Upper blend input.
fraction(float): The blending factor. Should be inside [0, 1]
Returns:
SE3Pose
"""
x = a.x * (1.0 - fraction) + b.x * fraction
y = a.y * (1.0 - fraction) + b.y * fraction
z = a.z * (1.0 - fraction) + b.z * fraction
rot = Quat.slerp(a.rot, b.rot, fraction)
return SE3Pose(x, y, z, rot)
class Quat(object):
"""Class representing a Quaternion."""
def __init__(self, w=1, x=0, y=0, z=0):
self.w = w
self.x = x
self.y = y
self.z = z
def __repr__(self):
return 'W: %0.4f X: %0.4f Y: %0.4f Z: %0.4f' % (self.w, self.x, self.y, self.z)
def inverse(self):
"""Computes the inverse of the current math_helpers.Quat."""
return Quat(self.w, -self.x, -self.y, -self.z)
def transform_point(self, x, y, z):
"""Computes the transformation (rotation by the quaternion) of a single (x,y,z)
point using the current math_helpers.Quat."""
inv = self.inverse()
q = Quat(0, x, y, z)
q = q.mult(inv)
q = self.mult(q)
return (q.x, q.y, q.z)
def transform_vec3(self, vec3):
"""Computes the transformation (rotation by the quaternion) of a Vec3
point using the current math_helpers.Quat."""
x, y, z = self.transform_point(vec3.x, vec3.y, vec3.z)
return geometry_pb2.Vec3(x=x, y=y, z=z)
def to_matrix(self):
"""Creates the 3x3 numpy rotation matrix from the current math_helpers.Quat"""
ret = numpy.eye(3)
ret[0, 0] = 1.0 - 2.0 * self.y * self.y - 2.0 * self.z * self.z
ret[0, 1] = 2.0 * self.x * self.y - 2.0 * self.z * self.w
ret[0, 2] = 2.0 * self.x * self.z + 2.0 * self.y * self.w
ret[1, 0] = 2.0 * self.x * self.y + 2.0 * self.z * self.w
ret[1, 1] = 1.0 - 2.0 * self.x * self.x - 2.0 * self.z * self.z
ret[1, 2] = 2.0 * self.y * self.z - 2.0 * self.x * self.w
ret[2, 0] = 2.0 * self.x * self.z - 2.0 * self.y * self.w
ret[2, 1] = 2.0 * self.y * self.z + 2.0 * self.x * self.w
ret[2, 2] = 1.0 - 2.0 * self.x * self.x - 2.0 * self.y * self.y
return ret
@staticmethod
def from_matrix(rot):
"""Creates a math_helpers.Quat from a numpy 3x3 matrix representing rotation."""
wt = 1 + rot[0, 0] + rot[1, 1] + rot[2, 2]
# do this most often so we get consistently signed quaternions
if wt > 0.1:
return Quat._from_matrix_w(rot)
xt = 1 + rot[0, 0] - rot[1, 1] - rot[2, 2]
yt = 1 - rot[0, 0] + rot[1, 1] - rot[2, 2]
zt = 1 - rot[0, 0] - rot[1, 1] + rot[2, 2]
# This is a list of (function that divides by the square root of val, val)
# The idea is to find the largest of wt, xt, yt, zt and then use the corresponding
# function to do the conversion. This will do the best thing numerically.
t = [(Quat._from_matrix_w, wt), (Quat._from_matrix_x, xt), (Quat._from_matrix_y, yt),
(Quat._from_matrix_z, zt)]
from_matrix_coord, val = max(t, key=lambda entry: entry[1])
if val < 1e-6:
# This shouldn't actually be theoretically possible.
raise ArithmeticError(
'Matrix cannot be converged to quaternion. Are you sure this is a valid'
' rotation matrix?\n' + str(rot))
return from_matrix_coord(rot)
@staticmethod
def _from_matrix_w(rot):
"""Computes the value of the quaternion for the w-axis from a numpy 3x3 rotation matrix."""
w = math.sqrt(1 + rot[0, 0] + rot[1, 1] + rot[2, 2]) * 0.5
return Quat(w=w, x=(rot[2, 1] - rot[1, 2]) / (4.0 * w),
y=(rot[0, 2] - rot[2, 0]) / (4.0 * w), z=(rot[1, 0] - rot[0, 1]) / (4.0 * w))
@staticmethod
def _from_matrix_x(rot):
"""Computes the value of the quaternion for the x-axis from a numpy 3x3 rotation matrix."""
x = math.sqrt(1 + rot[0, 0] - rot[1, 1] - rot[2, 2]) * 0.5
return Quat(w=(rot[2, 1] - rot[1, 2]) / (4.0 * x), x=x,
y=(rot[0, 1] + rot[1, 0]) / (4.0 * x), z=(rot[0, 2] + rot[2, 0]) / (4.0 * x))
@staticmethod
def _from_matrix_y(rot):
"""Computes the value of the quaternion for the y-axis from a numpy 3x3 rotation matrix."""
y = math.sqrt(1 - rot[0, 0] + rot[1, 1] - rot[2, 2]) * 0.5
return Quat(w=(rot[0, 2] - rot[2, 0]) / (4.0 * y), x=(rot[0, 1] + rot[1, 0]) / (4.0 * y),
y=y, z=(rot[1, 2] + rot[2, 1]) / (4.0 * y))
@staticmethod
def _from_matrix_z(rot):
"""Computes the value of the quaternion for the z-axis from a numpy 3x3 rotation matrix."""
z = math.sqrt(1 - rot[0, 0] - rot[1, 1] + rot[2, 2]) * 0.5
return Quat(w=(rot[1, 0] - rot[0, 1]) / (4.0 * z), x=(rot[0, 2] + rot[2, 0]) / (4.0 * z),
y=(rot[1, 2] + rot[2, 1]) / (4.0 * z), z=z)
@staticmethod
def from_roll(angle):
"""Computes a representative math_helpers.Quat from the Euler angle for roll."""
return Quat(w=math.cos(angle / 2.0), x=math.sin(angle / 2.0))
@staticmethod
def from_pitch(angle):
"""Computes a representative math_helpers.Quat from the Euler angle for pitch."""
return Quat(w=math.cos(angle / 2.0), y=math.sin(angle / 2.0))
@staticmethod
def from_yaw(angle):
"""Computes a representative math_helpers.Quat from the Euler angle for yaw."""
return Quat(w=math.cos(angle / 2.0), z=math.sin(angle / 2.0))
def to_roll(self):
"""Computes the Euler angle roll from the current math_helpers.Quat"""
if (self.w * self.w + self.x * self.x + self.y * self.y + self.z * self.z == 0.0):
return 0.0
t0 = 2.0 * (self.w * self.x + self.y * self.z)
t1 = 1.0 - 2.0 * (self.x * self.x + self.y * self.y)
return math.atan2(t0, t1)
def to_pitch(self):
"""Computes the Euler angle pitch from the current math_helpers.Quat"""
if (self.w * self.w + self.x * self.x + self.y * self.y + self.z * self.z == 0.0):
return 0.0
t2 = 2.0 * (self.w * self.y - self.z * self.x)
if t2 < -1.0:
t2 = -1.0
if t2 > 1.0:
t2 = 1.0
return math.asin(t2)
def to_yaw(self):
"""Computes the Euler angle yaw from the current math_helpers.Quat"""
yaw_only_quat = self.closest_yaw_only_quaternion()
return recenter_angle_mod(2 * math.atan2(yaw_only_quat.z, yaw_only_quat.w), 0.0)
def to_axis_angle(self):
"""Computes the angle and the respective axis from the math_helpers.Quat"""
if (self.w * self.w + self.x * self.x + self.y * self.y + self.z * self.z == 0.0):
return (0.0, [0, 0, 1])
mag = 1.0 - (self.w * self.w)
if mag <= 1e-12:
return (0.0, [0, 0, 1])
denom = math.sqrt(mag)
if denom < 1e-12:
return (0.0, [0, 0, 1])
angle = 2.0 * math.acos(self.w)
axis = [self.x / denom, self.y / denom, self.z / denom]
return (angle, axis)
@staticmethod
@deprecated(reason='Use from_proto instead.', version='3.1.0')
def from_obj(proto):
return Quat.from_proto(proto)
@staticmethod
def from_proto(proto):
"""Create a math_helpers.Quat from a geometry_pb2.Quaternion proto."""
return Quat(proto.w, proto.x, proto.y, proto.z)
def to_obj(self, proto):
"""Adds the math_helpers.Quat properties into the geometry_pb2.Quaternion 'proto'."""
proto.w = self.w
proto.x = self.x
proto.y = self.y
proto.z = self.z
def to_proto(self):
"""Converts the math_helpers.Quat into an output of the protobuf geometry_pb2.Quaternion."""
return geometry_pb2.Quaternion(w=self.w, x=self.x, y=self.y, z=self.z)
def mult(self, other_quat):
"""Computes the multiplication of two math_helpers.Quats."""
return Quat(
self.w * other_quat.w - self.x * other_quat.x - self.y * other_quat.y -
self.z * other_quat.z, self.w * other_quat.x + self.x * other_quat.w +
self.y * other_quat.z - self.z * other_quat.y, self.w * other_quat.y -
self.x * other_quat.z + self.y * other_quat.w + self.z * other_quat.x,
self.w * other_quat.z + self.x * other_quat.y - self.y * other_quat.x +
self.z * other_quat.w)
def __mul__(self, other):
"""Overrides the '*' symbol to compute the multiplication between two math_helpers.Quats
or between a Quat and a Vec3."""
if isinstance(other, Vec3):
(x, y, z) = self.transform_point(other.x, other.y, other.z)
return Vec3(x, y, z)
if isinstance(other, Quat):
return self.mult(other)
raise TypeError("Can't multiply types %s and %s." % (type(self), type(other)))
def normalize(self):
"""Normalizes the quaternion."""
q = numpy.array([self.w, self.x, self.y, self.z])
len = numpy.sqrt(numpy.dot(q.transpose(), q))
if (len < 1e-15):
q = [1.0, 0.0, 0.0, 0.0]
else:
q /= len
self.w = q[0]
self.x = q[1]
self.y = q[2]
self.z = q[3]
return self
def closest_yaw_only_quaternion(self):
"""Computes a yaw-only math_helpers.Quat from the current roll/pitch/yaw math_helpers.Quat"""
mag = math.sqrt(self.w * self.w + self.z * self.z)
if mag > 0:
return Quat(w=self.w / mag, x=0, y=0, z=self.z / mag)
else:
# If the problem is ill posed (i.e. z-axis of quaternion is [0, 0, -1]), then preserve old
# behavior and always rotate 180 degrees around the y-axis.
return Quat(w=0, x=0, y=1, z=0) * self
@staticmethod
def slerp(a, b, fraction):
v0 = numpy.array([a.w, a.x, a.y, a.z])
v1 = numpy.array([b.w, b.x, b.y, b.z])
dot = numpy.dot(v0.transpose(), v1)
# If the dot product is negative, slerp will not take
# the shorter path. Note that v1 and -v1 are equivalent when
# the negation is applied to all four components. Fix by
# reversing one quaternion.
if dot < 0.0:
v0 *= -1.0
dot = -dot
DOT_THRESHOLD = 1.0 - 1e-4
if dot > DOT_THRESHOLD:
# If the inputs are too close for comfort, linearly interpolate
# and normalize the result.
result = v0 + fraction * (v1 - v0)
result /= numpy.sqrt(numpy.dot(result.transpose(), result))
else:
# Since dot is in range [0, DOT_THRESHOLD], acos is safe
theta_0 = math.acos(dot) # theta_0 = angle between input vectors
theta = theta_0 * fraction # theta = angle between v0 and result
sin_theta = math.sin(theta) # compute this value only once
sin_theta_0 = math.sin(theta_0) # compute this value only once