generated from streamlit/streamlit-hello
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdsymb.py
250 lines (205 loc) · 7.64 KB
/
dsymb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
import os
from sklearn.utils import Bunch
import random
import gc
from segmentation import Segmentation
from segment_feature import SegmentFeature
import ruptures as rpt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.ticker as ticker
import time
from symbolization import Symbolization
from symbolic_signal_distance import SymbolicSignalDistance
from sklearn.preprocessing import StandardScaler
from weighted_levenshtein import lev
import streamlit as st
def compute_weighted_lev(
n_symbols,
symb_signal_1,
symb_signal_2,
insert_costs,
delete_costs,
substitute_costs,
):
"""Compute the general edit distance (a.k.a weighted Levenshtein
distance) between two symbolic signals.
The distance is not normalized by the lengths of the symbolic signals.
symb_signal_1 and symb_signal_2 are signals of integers (the labels of
the segment classes).
"""
# Avoid weird ASCII characters
assert n_symbols <= 26, "`n_symbols` should be inferior to 26!"
alphabet_signal_1 = [chr(i + ord("A")) for i in symb_signal_1]
alphabet_signal_2 = [chr(i + ord("A")) for i in symb_signal_2]
# Convert the list of strings / characters into long strings:
str_alphabet_signal_1 = "".join(alphabet_signal_1)
str_alphabet_signal_2 = "".join(alphabet_signal_2)
# Compute the weighted Levenshtein distance:
symb_signals_dist = lev(
str_alphabet_signal_1,
str_alphabet_signal_2,
insert_costs=insert_costs,
delete_costs=delete_costs,
substitute_costs=substitute_costs,
)
return symb_signals_dist
def get_feat_df(segment_features_df: pd.DataFrame) -> pd.DataFrame:
"""Return the same df with only the feature columns."""
feat_columns = [
col for col in segment_features_df.columns if col.endswith("_feat")
]
return segment_features_df[feat_columns]
def transform_costs(lookup_table):
"""Transform the substitute, insertion and deletion costs.
Computed from the look-up table and used for the weighted Levenshtein
distance.
Our symbols are the A, B, C, ... ASCII characters.
"""
# Integrate the lookup table into the substitute costs:
substitute_costs = np.ones((128, 128), dtype=np.float64)
n_symbols = lookup_table.shape[0]
substitute_costs[
ord("A") : ord("A") + n_symbols, ord("A") : ord("A") + n_symbols
] = lookup_table.astype(np.float64)
# Scale up the insert and delete costs:
lookup_table_max = lookup_table.max()
insert_costs = np.ones(128, dtype=np.float64) * lookup_table_max
delete_costs = np.ones(128, dtype=np.float64) * lookup_table_max
b_transform_costs = Bunch(
insert_costs=insert_costs,
delete_costs=delete_costs,
substitute_costs=substitute_costs,
)
return b_transform_costs
def compute_symbolisation(df_temp, n_signals):
l_min = np.min(df_temp["segment_length"])
symboli = []
for i in range(n_signals):
k = np.where(df_temp["signal_index"] == i)
k = k[0]
sym_x = []
for j in range(len(k)):
new_l = df_temp["segment_length"][k[j]] / l_min
new_sym = [df_temp["segment_symbol"][k[j]]] * new_l.astype(int)
sym_x = sym_x + new_sym
symboli.append(sym_x)
return symboli
def compute_matrix_distance(symboli, lookup_table, n_signals, n_clusters):
b_transform_costs = transform_costs(lookup_table)
D = np.zeros((n_signals, n_signals))
for i in range(n_signals):
for j in range(i, n_signals):
D[i, j] = compute_weighted_lev(
n_clusters,
symboli[i],
symboli[j],
b_transform_costs.insert_costs,
b_transform_costs.delete_costs,
b_transform_costs.substitute_costs,
)
D[j, i] = D[i, j]
return D
def my_clustering(n_clusters, X):
kmeans = KMeans(n_clusters=n_clusters, n_init=10).fit(X)
lookup_table = np.zeros((n_clusters, n_clusters))
for i in range(n_clusters):
for j in range(n_clusters):
lookup_table[i, j] = np.sqrt(
np.sum(
np.abs(
kmeans.cluster_centers_[i, :]
- kmeans.cluster_centers_[j, :]
)
** 2
)
)
return kmeans.labels_, lookup_table, kmeans.cluster_centers_
def reconstruct_signal(id_signal, X, df_temp):
k = np.where(df_temp["signal_index"] == id_signal)
k = k[0]
x_recons = np.tile(X[k[0], :], (df_temp["segment_length"][k[0]], 1))
for i in range(1, len(k)):
x_recons = np.concatenate(
(
x_recons,
np.tile(X[k[i], :], (df_temp["segment_length"][k[i]], 1)),
)
)
return x_recons
def reconstruct_signal_quant(id_signal, df_temp, centroids):
k = np.where(df_temp["signal_index"] == id_signal)
k = k[0]
x_recons = np.tile(
centroids[df_temp["segment_symbol"][k[0]], :],
(df_temp["segment_length"][k[0]], 1),
)
for i in range(1, len(k)):
x_recons = np.concatenate(
(
x_recons,
np.tile(
centroids[df_temp["segment_symbol"][k[i]], :],
(df_temp["segment_length"][k[i]], 1),
),
)
)
return x_recons
def get_multiscale_seg(X, n_clusters):
labels, lookup_table, centroids = my_clustering(n_clusters, X)
lookup_table = lookup_table / np.max(lookup_table)
return labels, lookup_table, centroids
@st.cache_data(ttl=3600, max_entries=1, show_spinner=False)
def dsym(list_of_multivariate_signals, n_symbols):
with st.spinner("Computing d_symb..."):
pen_factor = 1_000_000
n_signals = len(list_of_multivariate_signals)
# Define the segmentation
seg = Segmentation(
uniform_or_adaptive="adaptive",
mean_or_slope="mean",
n_segments=None,
pen_factor=pen_factor,
)
echelle = np.zeros((n_signals,))
for i in range(n_signals):
echelle[i] = np.mean(
np.var(list_of_multivariate_signals[i], axis=0)
)
nb_rupt = np.zeros((n_signals,))
big_list_of_multivariate_signals = []
big_list_of_bkps = []
for sig in range(n_signals):
x = list_of_multivariate_signals[sig]
big_list_of_multivariate_signals.append(x)
n1, n2 = np.shape(x)
pen = n1 * echelle[sig]
algo = rpt.KernelCPD(kernel="linear", jump=1).fit(
list_of_multivariate_signals[sig]
)
result = algo.predict(pen=pen)
big_list_of_bkps.append(result)
nb_rupt[sig] = len(result)
b_segmentation = Bunch(
list_of_multivariate_signals=big_list_of_multivariate_signals,
list_of_bkps=big_list_of_bkps,
)
seg_feat = SegmentFeature(
features_names=[
"mean",
]
)
df_temp = seg_feat.fit(b_segmentation).transform(b_segmentation)
X = df_temp.to_numpy()[:, : len(list_of_multivariate_signals[0][0])]
labels, lookup_table, centroids = get_multiscale_seg(X, n_symbols)
df_temp["segment_symbol"] = labels
symboli = compute_symbolisation(df_temp, n_signals)
D1 = compute_matrix_distance(
symboli, lookup_table, n_signals, len(lookup_table)
)
gc.collect()
return D1, df_temp, lookup_table, centroids