-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
017-Reading_Images_in_Python.py
240 lines (179 loc) · 7.46 KB
/
017-Reading_Images_in_Python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=52pMFnkDU-4
"""
Many ways to open images in Python.
PIL
matplotlib
skimage
openCV
other libraries to open propriatery images like czi, OME-TIFF
"""
"""
############################################################################
######### Using PIL, Python Imaging Library #########
#Pillow is an image manipulation and processing library
#You can use pillow to crop, resize images and to do basic filtering.
#For advanced tasks that require computer vision or machine elarning we have other packages.
#such as openCV, scikit image and scikit learn.
# to install pillow, pip install Pillow
# to import the package you need to use import PIL
"""
from PIL import Image
import numpy as np #Use numpy to convert images to arrays
# Read image
img = Image.open("images/test_image.jpg") #Not a numpy array
print(type(img))
# Output Images
img.show()
# prints format of image
print(img.format)
# prints mode of image
print(img.mode)
#PIL is not by default numpy array but can convert PIL image to numpy array.
img1 = np.asarray(img)
print(type(img1))
"""
###############################################################################
######### Using Matplotlib #########
#Matplotlib is a plotting library for the Python programming language
#Pyplot is a Matplotlib module which provides a MATLAB-like interface
#Pyplot is commonly used not just to generate plots and graphs but also to visualize images.
#because visualizing images is nothing but plotting data in 2D.
# to install matplotlib, pip install matplotlib
# to import the package you need to use import matplotlib
"""
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
img = mpimg.imread("images/test_image.jpg") #this is a numpy array
print(type(img))
print(img)
print(img.shape)
plt.imshow(img)
plt.colorbar() #Puts a color bar next to the image.
"""
#############################################################################
######Using scikit image ############
# to install matplotlib, pip install scikit-image
# to import the package you need to use import skimage
#scikit image is an image processing library that includes alforithms for
#segmentation, geometric transformation, color space manipulation, analysis, filtering,
#feature detection, and more.
#A very good package for traditional machine learning, using Random forest or SVM
"""
from skimage import io, img_as_float, img_as_ubyte
import numpy as np
import matplotlib.pyplot as plt
image = img_as_float(io.imread("images/test_image.jpg"))
#image2 = io.imread("images/test_image.jpg").astype(np.float)
#avoid using astype as it violates assumptions about dtype range.
#for example float should range from 0 to 1 (or -1 to 1) but if you use
#astype to convert to float, the values do not lie between 0 and 1.
#print(image.shape)
#plt.imshow(img)
print(image)
#print(image2)
#image8byte = img_as_ubyte(image)
#print(image8byte)
#End of Skimage
"""
#################################################################################
######### Using openCV #########
#to install open CV : pip install opencv-python
#to import the package you need to use import cv2
#openCV is a library of programming functions mainly aimed at computer vision.
#Very good for images and videos, especially real time videos.
#It is used extensively for facial recognition, object recognition, motion tracking,
#optical character recognition, segmentation, and even for artificial neural netwroks.
You can import images in color, grey scale or unchanged usingindividual commands
cv2.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the default flag.
cv2.IMREAD_GRAYSCALE : Loads image in grayscale mode
cv2.IMREAD_UNCHANGED : Loads image as such including alpha channel
Instead of these three flags, you can simply pass integers 1, 0 or -1 respectively.
"""
import cv2
grey_img = cv2.imread("images/test_image.jpg", 0)
color_img = cv2.imread("images/test_image.jpg", 1)
#images opened using cv2 are numpy arrays
print(type(grey_img))
print(type(color_img))
# Use the function cv2.imshow() to display an image in a window.
# First argument is the window name which is a string. second argument is our image.
cv2.imshow("pic", grey_img)
cv2.imshow("color pic", color_img)
# Maintain output window until
# user presses a key or 1000 ms (1s)
cv2.waitKey(0)
#destroys all windows created
cv2.destroyAllWindows()
#OpenCV imread, imwrite and imshow all work with the BGR order, not RGB
#but there is no need to change the order when you read an image with
#cv2.imread and then want to show it with cv2.imshow
#if you use matplotlib, it uses RGB.
import matplotlib.pyplot as plt
plt.imshow(color_img)
#OpenCV represents RGB images as multi-dimensional NumPy arrays, but as BGR.
#we can convert the images from BGR to RGB
plt.imshow(cv2.cvtColor(color_img, cv2.COLOR_BGR2RGB))
#We can also change color spaces from RGB to HSV..
plt.imshow(cv2.cvtColor(color_img, cv2.COLOR_BGR2HSV))
"""
###############################################################################
###########Reading OME-TIFF using apeer_ometiff_library ###########
# pip install apeer-ometiff-library first
# to import the package you need to use import apeer_ometiff_library
#OME-TIFF has tiff and metada (as XML) embedded
#Image is a 5D array.
"""
from apeer_ometiff_library import io #Use apeer.com free platform for image processing in the cloud
(pic2, omexml) = io.read_ometiff("images/test_image.ome.tif") #Unwrap image and embedded xml metadata
print (pic2.shape) #to verify the shape of the array
print(pic2)
print(omexml)
"""
####################################################################################
#reading czi files
# pip install czifile
# to import the package you need to use import czifile
# https://pypi.org/project/czifile/
"""
import czifile
img = czifile.imread('images/test_image.czi')
print(img.shape)
import czifile
from skimage import io
img = czifile.imread('images/Osteosarcoma_01.czi')
print(img.shape)
img1=img[0, 0, :, :, :, 0]
print(img1.shape)
img2=img1[2,:,:]
io.imshow(img2)
"""
######################################################################################
### Reading multiple images from a folder
#The glob module finds all the path names
#matching a specified pattern according to the rules used by the Unix shell
#The glob.glob returns the list of files with their full path
"""
#import the library opencv
import cv2
import glob
#select the path
path = "images/test_images/aeroplane/*.*"
for file in glob.glob(path):
print(file) #just stop here to see all file names printed
a= cv2.imread(file) #now, we can read each file since we have the full path
print(a) #print numpy arrays for each file
#let us look at each file
# cv2.imshow('Original Image', a)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
#process each image - change color from BGR to RGB.
c = cv2.cvtColor(a, cv2.COLOR_BGR2RGB)
cv2.imshow('Color image', c)
#wait for 1 second
k = cv2.waitKey(0)
#destroy the window
cv2.destroyAllWindows()
#######################################################################################