-
Notifications
You must be signed in to change notification settings - Fork 74
/
utils.py
131 lines (98 loc) · 4.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
import torch
from scipy.sparse import csgraph
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def normalize_adj(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv_sqrt = np.power(rowsum, -0.5).flatten()
r_inv_sqrt[np.isinf(r_inv_sqrt)] = 0.
r_mat_inv_sqrt = sp.diags(r_inv_sqrt)
return mx.dot(r_mat_inv_sqrt).transpose().dot(r_mat_inv_sqrt).tocoo()
def laplacian(mx, norm):
"""Laplacian-normalize sparse matrix"""
assert (all (len(row) == len(mx) for row in mx)), "Input should be a square matrix"
return csgraph.laplacian(adj, normed = norm)
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def load_data(path="/home/bumsoo/Data/Planetoid", dataset="cora"):
"""
ind.[:dataset].x => the feature vectors of the training instances (scipy.sparse.csr.csr_matrix)
ind.[:dataset].y => the one-hot labels of the labeled training instances (numpy.ndarray)
ind.[:dataset].allx => the feature vectors of both labeled and unlabeled training instances (csr_matrix)
ind.[:dataset].ally => the labels for instances in ind.dataset_str.allx (numpy.ndarray)
ind.[:dataset].graph => the dict in the format {index: [index of neighbor nodes]} (collections.defaultdict)
ind.[:dataset].tx => the feature vectors of the test instances (scipy.sparse.csr.csr_matrix)
ind.[:dataset].ty => the one-hot labels of the test instances (numpy.ndarray)
ind.[:dataset].test.index => indices of test instances in graph, for the inductive setting
"""
print("\n[STEP 1]: Upload {} dataset.".format(dataset))
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("{}/ind.{}.{}".format(path, dataset, names[i]), 'rb') as f:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("{}/ind.{}.test.index".format(path, dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
#Citeseer dataset contains some isolated nodes in the graph
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
print("| # of nodes : {}".format(adj.shape[0]))
print("| # of edges : {}".format(adj.sum().sum()/2))
features = normalize(features)
adj = normalize_adj(adj + sp.eye(adj.shape[0]))
print("| # of features : {}".format(features.shape[1]))
print("| # of clases : {}".format(ally.shape[1]))
features = torch.FloatTensor(np.array(features.todense()))
sparse_mx = adj.tocoo().astype(np.float32)
adj = torch.FloatTensor(np.array(adj.todense()))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
if dataset == 'citeseer':
save_label = np.where(labels)[1]
labels = torch.LongTensor(np.where(labels)[1])
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
idx_test = test_idx_range.tolist()
print("| # of train set : {}".format(len(idx_train)))
print("| # of val set : {}".format(len(idx_val)))
print("| # of test set : {}".format(len(idx_test)))
idx_train, idx_val, idx_test = list(map(lambda x: torch.LongTensor(x), [idx_train, idx_val, idx_test]))
def missing_elements(L):
start, end = L[0], L[-1]
return sorted(set(range(start, end+1)).difference(L))
if dataset == 'citeseer':
L = np.sort(idx_test)
missing = missing_elements(L)
for element in missing:
save_label = np.insert(save_label, element, 0)
labels = torch.LongTensor(save_label)
return adj, features, labels, idx_train, idx_val, idx_test