Skip to content

Latest commit

 

History

History

1_preprocessor

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cell Preprocessor module

Cell Image Preprocessor module of CellNet

Requirements

Input directory

The input directory should be in the given format:

[:folder]
    |-[:class 0]
        |-[:img 0]
        |-[:img 1]
        |-[:img 2]
        ...
    |-[:class 1]
    |-[:class 2]
    ...
        ...
            ...

Menu Options

If you run the program, you will meet a menu script that will help you through various processes.

$ python main.py

################## [ Options ] ###########################
# Mode 1 'print' : Print names of image data file
# Mode 2 'read'  : [original/aug] Read names data
# Mode 3 'resize': [target_size]  Resize & Orgnaize data
# Mode 4 'split' : Create a train-validation split of data
# Mode 5 'count' : Check the distribution of raw data
# Mode 6 'check' : Check the distribution of train/val split
# Mode 7 'aug'   : Augment the training data sample
# Mode 8 'exit'  : Terminate the program
##########################################################

Enter mode name : 

If you enter the mode name in the given line, the code will run the function that has been typed.

Modules

1. print

Enter mode name : print

This module will print all the the file names of image related file formats(".jpg", ".png")

2. read

Enter mode name : read

This module will read all the images and print out the spacial dimension of image related files.

3. resize

Enter mode name : resize

This module will save all the resized images into your given directory

4. split

Enter mode name : split

This module will organize your input file directory into the following format. You should manually set how much validation sets you want in your val class in val_num from config.py.

[:folder]
    |-train
        |-[:class 0]
            |-[:img 0]
            |-[:img 1]
            |-[:img 2]
            ...
        |-[:class 1]
        |-[:class 2]
        ...
            ...
                ...
    |-val
        |-[:class 0]
            |-[:img 0]
            |-[:img 1]
            |-[:img 2]
            ...
        |-[:class 1]
        |-[:class 2]
        ...
            ...
                ...

5. count

Enter mode name : count

This will count the number of images within each sub-categories in the data. An example for the file directory after running module 5 (count) is as below.

$ Enter mode name : count

| Cat_vs_Dog dataset : 
        | cat       12500
        | dog       12500

6. check

Enter mode name : check

This will check how your train/validation split is consisted. An example for the file directory after running module 4 (split) is as below.

$ Enter mode name : check

| train set : 
        | cat        100
        | dog        100
| val set : 
        | cat        100
        | dog        100

7. augmentation

Enter mode name : aug

This module will apply various image augmentations and enlarge your training set. The input should be the splitted directory after running module 4 (split)