forked from glycerine/offheap
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoffheap.go
597 lines (497 loc) · 15.6 KB
/
offheap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
package offheap
import (
"encoding/binary"
"fmt"
"unsafe"
)
//go:generate msgp
// Copyright (C) 2015 by Jason E. Aten, Ph.D.
// metadata serialization size can never grow bigger
// than MetadataHeaderMaxBytes (currently one 4K page), without impacting
// backwards compatibility. We reserve this many bytes
// at the beginning of the memory mapped file for the metadata.
const MetadataHeaderMaxBytes = 4096
// HashTable represents the off-heap hash table.
// Create a new one with NewHashTable(), then use
// Lookup(), Insert(), and DeleteKey() on it.
// HashTable is meant to be customized by the
// user, to reflect your choice of key and value
// types. See StringHashTable and ByteKeyHashTable
// for examples of this specialization process.
type HashTable struct {
MagicNumber int // distinguish between reading from empty file versus an on-disk HashTable.
Cells uintptr `msg:"-"`
CellSz uint64
ArraySize uint64
Population uint64
ZeroUsed bool
ZeroCell Cell
OffheapHeader []byte `msg:"-"` //
OffheapCells []byte `msg:"-"` //
Mmm MmapMalloc `msg:"-"` //
}
// Create a new hash table, able to hold initialSize count of keys.
func NewHashTable(initialSize int64) *HashTable {
return NewHashFileBacked(initialSize, "")
}
func NewHashFileBacked(initialSize int64, filepath string) *HashTable {
//fmt.Printf("\n\n NewHashFileBacked called!\n\n")
t := HashTable{
MagicNumber: 3030675468910466832,
CellSz: uint64(unsafe.Sizeof(Cell{})), // 计算每个 Cell 大小
}
// off-heap and off-gc version
if initialSize < 0 {
t.Mmm = *Malloc(-1, filepath)
} else {
t.ArraySize = uint64(initialSize)
t.Mmm = *Malloc(t.bytesFromArraySizeAndHeader(t.ArraySize), filepath)
}
//p("&t.Mmm.Mem[0] = %p\n", &t.Mmm.Mem[0])
t.OffheapHeader = t.Mmm.Mem
t.OffheapCells = t.Mmm.Mem[MetadataHeaderMaxBytes:]
t.Cells = (uintptr)(unsafe.Pointer(&t.OffheapCells[0]))
// test deserialize
t2 := HashTable{}
_, err := t2.UnmarshalMsg(t.OffheapHeader)
if err != nil {
//fmt.Printf("UnmarshalMsg err = %v\n", err)
// common to not be able to deserialize 0 bytes, don't worry
} else {
//fmt.Printf("\n deserialized okay! t2=%#v\n t=%#v\n", t2, t)
// no error during de-serialize; okay but verify our MagicNumer too.
if t2.MagicNumber == t.MagicNumber {
// okay to copy in, we are restoring an existing table from disk
t.Population = t2.Population
t.ZeroUsed = t2.ZeroUsed
t.ZeroCell = t2.ZeroCell
}
}
// old: off-gc but still on-heap version
// t.ArraySize = initialSize
// t.Offheap = make([]byte, t.ArraySize*t.CellSz)
// t.Cells = (uintptr)(unsafe.Pointer(&t.Offheap[0]))
// on-heap version:
//Cells: make([]Cell, initialSize),
return &t
}
// Key_t is the basic type for keys. Users of the library will
// probably redefine this.
type Key_t [64]byte
// Val_t is the basic type for values stored in the cells in the table.
// Users of the library will probably redefine this to be a different
// size at the very least.
type Val_t [56]byte
// Cell is the basic payload struct, stored inline in the HashTable. The
// cell is returned by the fundamental Lookup() function. The member
// Value is where the value that corresponds to the key (in ByteKey)
// is stored. Both the key (in ByteKey) and the value (in Value) are
// stored inline inside the hashtable, so that all storage for
// the hashtable is in the same offheap segment. The uint64 key given
// to fundamental Insert() method is stored in UnHashedKey. The hashed value of the
// UnHashedKey is not stored in the Cell, but rather computed as needed
// by the basic Insert() and Lookup() methods.
type Cell struct {
UnHashedKey uint64
ByteKey Key_t
Value Val_t // customize this to hold your value's data type entirely here.
}
/*
SetValue stores any value v in the Cell. Note that
users of the library will need to extend this for
their type. Only strings of length less than 56,
and integers are handled by default.
*/
func (cell *Cell) SetValue(v interface{}) {
switch a := v.(type) {
case string:
cell.SetString(a)
case int:
cell.SetInt(a)
default:
panic("unsupported type")
}
}
// ZeroValue sets the cell's value to all zeros.
func (cell *Cell) ZeroValue() {
for i := range cell.Value[:] {
cell.Value[i] = 0
}
}
// SetString stores string s (up to val_t length, currently 56 bytes) in cell.Value.
func (cell *Cell) SetString(s string) {
copy(cell.Value[:], []byte(s))
}
// GetString retreives a string value from the cell.Value.
func (cell *Cell) GetString() string {
return string([]byte(cell.Value[:]))
}
// SetInt stores an integer value in the cell.
func (cell *Cell) SetInt(n int) {
binary.LittleEndian.PutUint64(cell.Value[:8], uint64(n))
}
// GetInt retreives an integer value from the cell.
func (cell *Cell) GetInt() int {
return int(binary.LittleEndian.Uint64(cell.Value[:8]))
}
// SetInt sets an int value for Val_t v.
func (v *Val_t) SetInt(n int) {
binary.LittleEndian.PutUint64((*v)[:8], uint64(n))
}
// GetInt gets an int value for Val_t v.
func (v *Val_t) GetInt() int {
return int(binary.LittleEndian.Uint64((*v)[:8]))
}
// SetString sets a string value for Val_t v.
func (v *Val_t) SetString(s string) {
copy((*v)[:], []byte(s))
}
// GetString retreives a string value for Val_t v.
func (v *Val_t) GetString() string {
return string([]byte((*v)[:]))
}
// Save syncs the memory mapped file to disk using MmapMalloc::BlockUntilSync().
// If background is true, the save using BackgroundSync() instead of blocking.
func (t *HashTable) Save(background bool) error {
bts, err := t.MarshalMsg(nil)
if err != nil {
return fmt.Errorf("offheap.HashTable.Save() error: serialization error from msgp.MarshalMsg(): '%s'", err)
}
if len(bts) > MetadataHeaderMaxBytes {
return fmt.Errorf("offheap.HashTable.Save() error: serialization too long: len(bts)==%d is > MetadataHeaderMaxBytes==%d, so serializing the HashTable metadata would overwrite the cell contents; rather than corrupting the cell data we are returning an error here.", len(bts), MetadataHeaderMaxBytes)
}
nw := copy(t.OffheapHeader, bts)
_ = nw
//fmt.Printf("saved bts header of size %v by writing %v = '%s'. t.OffheapHeader = %p, t.OffheapCells = %p, &t.Mmm.Mem[0] = %p\n", len(bts), nw, string(bts), &t.OffheapHeader[0], &t.OffheapCells[0], &t.Mmm.Mem[0])
if background {
t.Mmm.BackgroundSync()
//fmt.Printf("\ndone with call to initiate background sync.\n")
} else {
t.Mmm.BlockUntilSync()
//fmt.Printf("\ndone with block until sync\n")
}
return nil
}
// CellAt: fetch the cell at a given index. E.g. t.CellAt(pos) replaces t.Cells[pos]
func (t *HashTable) CellAt(pos uint64) *Cell {
// off heap version
return (*Cell)(unsafe.Pointer(uintptr(t.Cells) + uintptr(pos*t.CellSz)))
// on heap version, back when t.Cells was []Cell
//return &(t.Cells[pos])
}
// DestroyHashTable frees the memory-mapping, returning the
// memory containing the hash table and its cells to the OS.
// By default the save-to-file-on-disk functionality in malloc.go is
// not used, but that can be easily activated. See malloc.go.
// Deferencing any cells/pointers into the hash table after
// destruction will result in crashing your process, almost surely.
func (t *HashTable) DestroyHashTable() {
t.Mmm.Free()
}
// Lookup a cell based on a uint64 key value. Returns nil if key not found.
func (t *HashTable) Lookup(key uint64) *Cell {
var cell *Cell
if key == 0 {
if t.ZeroUsed {
return &t.ZeroCell
}
return nil
} else {
//p("for t = %p, t.ArraySize = %v", t, t.ArraySize)
// 取模,定位到 Cell
h := integerHash(uint64(key)) % t.ArraySize
// 顺序查找 Cell
for {
// 定位到 Cell
cell = t.CellAt(h)
// 是否找到 key
if cell.UnHashedKey == key {
return cell
}
// 是否已找完
if cell.UnHashedKey == 0 {
return nil
}
// 继续探查下一个 cell
h++
if h == t.ArraySize {
h = 0
}
}
}
}
// Insert a key and get back the Cell for that key, so
// as to enable assignment of Value within that Cell, for
// the specified key. The 2nd return value is false if
// key already existed (and thus required no addition); if
// the key already existed you can inspect the existing
// value in the *Cell returned.
func (t *HashTable) Insert(key uint64) (*Cell, bool) {
vprintf("\n ---- Insert(%v) called with t = \n", key)
vdump(t)
defer func() {
vprintf("\n ---- Insert(%v) done, with t = \n", key)
vdump(t)
}()
var cell *Cell
if key != 0 {
for {
// 定位 Cell
h := integerHash(uint64(key)) % t.ArraySize
for {
cell = t.CellAt(h)
if cell.UnHashedKey == key {
// already exists
return cell, false
}
// 当前 Cell 为空,可以插入
if cell.UnHashedKey == 0 {
if (t.Population+1)*4 >= t.ArraySize*3 {
vprintf("detected (t.Population+1)*4 >= t.ArraySize*3, i.e. %v >= %v, calling Repop with double the size\n", (t.Population+1)*4, t.ArraySize*3)
t.Repopulate(t.ArraySize * 2)
// resized, so start all over
break
}
t.Population++
cell.UnHashedKey = key
return cell, true
}
// 继续探查
h++
if h == t.ArraySize {
h = 0
}
}
}
} else {
wasNew := false
if !t.ZeroUsed {
wasNew = true
t.ZeroUsed = true
t.Population++
if t.Population*4 >= t.ArraySize*3 {
t.Repopulate(t.ArraySize * 2)
}
}
return &t.ZeroCell, wasNew
}
}
// InsertIntValue inserts value under key in the table.
func (t *HashTable) InsertIntValue(key uint64, value int) bool {
cell, ok := t.Insert(key)
cell.SetValue(value)
return ok
}
// DeleteCell deletes the cell pointed to by cell.
func (t *HashTable) DeleteCell(cell *Cell) {
if cell == &t.ZeroCell {
// Delete zero cell
if !t.ZeroUsed {
panic("deleting zero element when not used")
}
t.ZeroUsed = false
cell.ZeroValue()
t.Population--
return
} else {
pos := uint64((uintptr(unsafe.Pointer(cell)) - uintptr(unsafe.Pointer(t.Cells))) / uintptr(unsafe.Sizeof(Cell{})))
// Delete from regular Cells
if pos < 0 || pos >= t.ArraySize {
panic(fmt.Sprintf("cell out of bounds: pos %v was < 0 or >= t.ArraySize == %v", pos, t.ArraySize))
}
if t.CellAt(pos).UnHashedKey == 0 {
panic("zero UnHashedKey in non-zero Cell!")
}
// Remove this cell by shuffling neighboring Cells so there are no gaps in anyone's probe chain
nei := pos + 1
if nei >= t.ArraySize {
nei = 0
}
var neighbor *Cell
var circular_offset_ideal_pos int64
var circular_offset_ideal_nei int64
var cellPos *Cell
for {
neighbor = t.CellAt(nei)
if neighbor.UnHashedKey == 0 {
// There's nobody to swap with. Go ahead and clear this cell, then return
cellPos = t.CellAt(pos)
cellPos.UnHashedKey = 0
cellPos.ZeroValue()
t.Population--
return
}
ideal := integerHash(neighbor.UnHashedKey) % t.ArraySize
if pos >= ideal {
circular_offset_ideal_pos = int64(pos) - int64(ideal)
} else {
// pos < ideal, so pos - ideal is negative, wrap-around has happened.
circular_offset_ideal_pos = int64(t.ArraySize) - int64(ideal) + int64(pos)
}
if nei >= ideal {
circular_offset_ideal_nei = int64(nei) - int64(ideal)
} else {
// nei < ideal, so nei - ideal is negative, wrap-around has happened.
circular_offset_ideal_nei = int64(t.ArraySize) - int64(ideal) + int64(nei)
}
if circular_offset_ideal_pos < circular_offset_ideal_nei {
// Swap with neighbor, then make neighbor the new cell to remove.
*t.CellAt(pos) = *neighbor
pos = nei
}
nei++
if nei >= t.ArraySize {
nei = 0
}
}
}
}
// Clear does not resize the table, but zeroes-out all entries.
func (t *HashTable) Clear() {
// (Does not resize the array)
// Clear regular Cells
for i := range t.OffheapCells {
t.OffheapCells[i] = 0
}
t.Population = 0
// Clear zero cell
t.ZeroUsed = false
t.ZeroCell.ZeroValue()
}
// Compact will compress the hashtable so that it is at most
// 75% full.
func (t *HashTable) Compact() {
t.Repopulate(upper_power_of_two((t.Population*4 + 3) / 3))
}
// DeleteKey will delete the contents of the cell associated with key.
func (t *HashTable) DeleteKey(key uint64) {
value := t.Lookup(key)
if value != nil {
t.DeleteCell(value)
}
}
// Repopulate expands the hashtable to the desiredSize count of cells.
//
// 扩容
func (t *HashTable) Repopulate(desiredSize uint64) {
//p("top of Repopulate(%v)", desiredSize)
vprintf("\n ---- Repopulate called with t = \n")
vdump(t)
if desiredSize&(desiredSize-1) != 0 {
panic("desired size must be a power of 2")
}
if t.Population*4 > desiredSize*3 {
panic("must have t.Population * 4 <= desiredSize * 3")
}
// Allocate new table
// TODO: implement growmap for mmap backed resizing.
s := NewHashTable(int64(desiredSize))
s.ZeroUsed = t.ZeroUsed
if t.ZeroUsed {
s.ZeroCell = t.ZeroCell
s.Population++
}
// Iterate through old table t, copy into new table s.
var c *Cell
for i := uint64(0); i < t.ArraySize; i++ {
c = t.CellAt(i)
vprintf("\n in oldCell copy loop, at i = %v, and c = '%#v'\n", i, c)
if c.UnHashedKey != 0 {
// Insert this element into new table
cell, ok := s.Insert(c.UnHashedKey)
if !ok {
panic(fmt.Sprintf("key '%v' already exists in fresh table s: should be impossible", c.UnHashedKey))
}
*cell = *c
}
}
vprintf("\n ---- Done with Repopulate, now s = \n")
vdump(s)
t.DestroyHashTable()
*t = *s
//p("bottom of Repopulate(), now t.ArraySize = %v, t = %p", t.ArraySize, t)
}
/*
Iterator
sample use: given a HashTable h, enumerate h's contents with:
for it := offheap.NewIterator(h); it.Cur != nil; it.Next() {
found = append(found, it.Cur.UnHashedKey)
}
*/
type Iterator struct {
Tab *HashTable
Pos int64
Cur *Cell // will be set to nil when done with iteration.
}
// NewIterator creates a new iterator for HashTable tab.
func (tab *HashTable) NewIterator() *Iterator {
it := &Iterator{
Tab: tab,
Cur: &tab.ZeroCell,
Pos: -1, // means we are at the ZeroCell to start with
}
if it.Tab.Population == 0 {
it.Cur = nil
it.Pos = -2
return it
}
if !it.Tab.ZeroUsed {
it.Next()
}
return it
}
// Done checks to see if we have already iterated through all cells
// in the table. Equivalent to checking it.Cur == nil.
func (it *Iterator) Done() bool {
if it.Cur == nil {
return true
}
return false
}
// Next advances the iterator so that it.Cur points to the next
// filled cell in the table, and returns that cell. Returns nil
// once there are no more cells to be visited.
func (it *Iterator) Next() *Cell {
// Already finished?
if it.Cur == nil {
return nil
}
// Iterate through the regular Cells
it.Pos++
for uint64(it.Pos) != it.Tab.ArraySize {
it.Cur = it.Tab.CellAt(uint64(it.Pos))
if it.Cur.UnHashedKey != 0 {
return it.Cur
}
it.Pos++
}
// Finished
it.Cur = nil
it.Pos = -2
return nil
}
// Dump provides a diagnostic dump of the full HashTable contents.
func (t *HashTable) Dump() {
for i := uint64(0); i < t.ArraySize; i++ {
cell := t.CellAt(i)
fmt.Printf("dump cell %d: \n cell.UnHashedKey: '%v'\n cell.ByteKey: '%s'\n cell.Value: '%#v'\n ===============", i, cell.UnHashedKey, string(cell.ByteKey[:]), cell.Value)
}
}
// InsertBK is the insert function for []byte keys.
// By default only len(Key_t) bytes are used in the key.
func (t *HashTable) InsertBK(bytekey []byte, value interface{}) bool {
return ((*ByteKeyHashTable)(t)).InsertBK(bytekey, value)
}
func (t *HashTable) LookupBK(bytekey []byte) (Val_t, bool) {
return ((*ByteKeyHashTable)(t)).LookupBK(bytekey)
}
func (t *HashTable) LookupBKInt(bytekey []byte) (int, bool) {
v, found := ((*ByteKeyHashTable)(t)).LookupBK(bytekey)
if !found {
return -1, found
}
return v.GetInt(), true
}
func (t *HashTable) bytesFromArraySizeAndHeader(arraySize uint64) int64 {
return int64(arraySize*t.CellSz) + MetadataHeaderMaxBytes
}