-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_lstm.py
93 lines (74 loc) · 3.11 KB
/
simple_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Simple LSTM based on the following example: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb
# 20 epochs, 25 % noise: val acc 85.71 %, test acc 86.62 %
import tensorflow as tf
import numpy as np
import pickle
import os
data_path = os.path.dirname(os.path.realpath(__file__)) + "\\data\\"
# Training Parameters
learning_rate = 0.001
n_epochs = 20
batch_size = 128
# Network Parameters
n_inputs = 26
timesteps = 99
n_hidden = 128
n_classes = 2
# tf Graph input
X = tf.placeholder("float", [None, timesteps, n_inputs])
y = tf.placeholder("float", [None, n_classes])
# Read data
X_train, y_train = pickle.load(open(data_path + "train.p", "rb"))
X_test, y_test = pickle.load(open(data_path + "test.p", "rb"))
X_val, y_val = pickle.load(open(data_path + "val.p", "rb"))
# Define weights and biases
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Create model
def lstm(X, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
X = tf.unstack(X, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = tf.nn.static_rnn(lstm_cell, X, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
# Construct model
logits = lstm(X, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
# Define accuracy
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(n_epochs):
avg_cost = 0.
n_batches = int(len(X_train)/batch_size)
X_batches = np.array_split(X_train, n_batches)
Y_batches = np.array_split(y_train, n_batches)
# Loop over all batches
for i in range(n_batches):
batch_x, batch_y = X_batches[i], Y_batches[i]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / n_batches
# Display logs per epoch step
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost), "Val accuracy:", accuracy.eval({X: X_val, y: y_val}))
print("Optimization Finished!")
print("Test accuracy:", accuracy.eval({X: X_test, y: y_test}))