-
Notifications
You must be signed in to change notification settings - Fork 0
/
gru_single_layer_yolo.py
136 lines (105 loc) · 4.92 KB
/
gru_single_layer_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import tensorflow as tf
import numpy as np
import pickle
import os
from scipy.io import wavfile
from python_speech_features import mfcc
from preprocessing import normalize
import matplotlib.pyplot as plt
model_name = "single_layer_gru_10-90"
train_model = False
data_path = os.path.dirname(os.path.realpath(__file__)) + "\\data\\"
X_train, y_train = pickle.load(open(data_path + "train.p", "rb"))
X_test, y_test = pickle.load(open(data_path + "test.p", "rb"))
X_val, y_val = pickle.load(open(data_path + "val.p", "rb"))
n_train = len(y_train)
n_val = len(y_val)
n_test = len(y_test)
n_steps = 99
n_inputs = 26
n_neurons = 128
n_outputs = 2
learning_rate = 0.001
n_epochs = 100
batch_size = 128
n_batches = int(len(X_train)/batch_size)
X_batches = np.array_split(X_train[:-(n_train%batch_size)], n_batches)
Y_batches = np.array_split(y_train[:-(n_train%batch_size)], n_batches)
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
initial_state = tf.placeholder(tf.float32, [None, n_neurons])
keep_prob = tf.placeholder_with_default(1.0, shape=())
cell = tf.contrib.rnn.GRUCell(n_neurons)
cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=keep_prob)
outputs, states = tf.nn.dynamic_rnn(cell=cell, inputs=X, dtype=tf.float32, initial_state=initial_state)
stacked_rnn_outputs = tf.reshape(outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)
outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])
logits = outputs[:,-1,:]
wakeword_probs = tf.nn.softmax(outputs)
last_prob = wakeword_probs[:,-1,:]
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
if train_model == True:
with tf.Session() as sess:
init.run()
first_state = np.zeros((batch_size, n_neurons))
val_state = np.zeros((n_val, n_neurons))
for epoch in range(n_epochs):
#initial_state = [[0.0]*100]*128
avg_loss = 0.
for i in range(n_batches):
#print(first_state)
X_batch, y_batch = X_batches[i], Y_batches[i]
_, c, first_state = sess.run([training_op, loss, states], feed_dict={X: X_batch,
y: y_batch,
keep_prob: 0.75,
initial_state: first_state})
avg_loss += c / n_batches
print("Epoch:", '%04d' % (epoch+1), "loss=", "{:.9f}".format(avg_loss), "Val accuracy:", accuracy.eval({X: X_val[:batch_size],
y: y_val[:batch_size],
keep_prob: 1.0,
initial_state: first_state}))
print("Optimization Finished!")
print("Test accuracy:", accuracy.eval({X: X_test, y: y_test, keep_prob: 1.0, initial_state: val_state}))
save_path = saver.save(sess, "./models/" + model_name + ".ckpt")
with tf.Session() as sess:
saver.restore(sess, "./models/" + model_name + ".ckpt")
rec_dict = {"recording": [170, 740, 930],
"recording2": [620],
"recording3": [790],
"recording4": [495, 940],
"recording5": [363],
"recording6": [795, 1684],
"recording7": [1180],
"concat_file": [200, 800, 1200, 1800],
}
for fname in rec_dict.keys():
if not os.path.exists("plots/" + model_name):
os.makedirs("plots/" + model_name)
fs, x = wavfile.read(fname + ".wav")
recording = normalize(mfcc(x, numcep=26))
ww_times = rec_dict[fname]
probs = []
st = np.zeros((1, n_neurons))
for i in range(0, len(recording)-99, 100):
st, wp = sess.run([states, wakeword_probs], feed_dict={X: [recording[i:i+99]], keep_prob: 1.0, initial_state: st})
#print(wp.shape)
for val in wp[0,:,0]:
probs.append(val)
probs = np.asarray(probs[100:])
threshold = 0.99
detections = probs > threshold
x = np.linspace(0, len(probs)-1, len(probs))
plt.plot(x[detections], probs[detections], 'go')
plt.plot(x, probs)
for t in ww_times:
plt.axvline(x=t-100, color="red")
plt.savefig("plots/" + model_name + "/" + fname)
plt.clf()