-
Notifications
You must be signed in to change notification settings - Fork 0
/
GRU.py
77 lines (64 loc) · 2.83 KB
/
GRU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import tensorflow as tf
import numpy as np
import pickle
import os
data_path = os.path.dirname(os.path.realpath(__file__)) + "\\data\\"
X_train, y_train = pickle.load(open(data_path + "train.p", "rb"))
X_test, y_test = pickle.load(open(data_path + "test.p", "rb"))
X_val, y_val = pickle.load(open(data_path + "val.p", "rb"))
n_steps = 99
n_inputs = 26
n_neurons = 128
n_outputs = 2
n_layers = 3
learning_rate = 0.001
n_epochs = 10
batch_size = 128
n_batches = int(len(X_train)/batch_size)
X_batches = np.array_split(X_train, n_batches)
Y_batches = np.array_split(y_train, n_batches)
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
keep_prob = tf.placeholder_with_default(1.0, shape=())
cells = []
for _ in range(n_layers):
grucell = tf.contrib.rnn.GRUCell(n_neurons)
grucell = tf.contrib.rnn.DropoutWrapper(grucell, output_keep_prob=keep_prob)
cells.append(grucell)
cell = tf.contrib.rnn.MultiRNNCell(cells)
outputs, states = tf.nn.dynamic_rnn(cell=cell, inputs=X, dtype=tf.float32)
stacked_rnn_outputs = tf.reshape(outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)
outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])
logits = outputs[:,-1,:]
wakeword_probs = tf.nn.softmax(outputs)
last_prob = wakeword_probs[:,-1,:]
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
avg_loss = 0.
for i in range(n_batches):
X_batch, y_batch = X_batches[i], Y_batches[i]
_, c = sess.run([training_op, loss], feed_dict={X: X_batch,
y: y_batch,
keep_prob: 0.5})
avg_loss += c / n_batches
#log = logits.eval(feed_dict={X: X_test, y: y_test})
#y_pred = y.eval(feed_dict={X: X_test, y: y_test})
#y_prob, y_true = sess.run([last_prob, y], feed_dict={X: X_test, y: y_test})
#print(['%.4f' % elem for elem in y_prob[:,1]][10:20])
#print(y_true[10:20])
print("Epoch:", '%04d' % (epoch+1), "loss=", "{:.9f}".format(avg_loss), "Val accuracy:", accuracy.eval({X: X_val, y: y_val}))
print("Optimization Finished!")
probs_pos = wakeword_probs.eval(feed_dict={X: [X_test[11]], y: [y_test[11]]})
probs_neg = wakeword_probs.eval(feed_dict={X: [X_test[12]], y: [y_test[12]]})
print(probs_pos)
print(probs_neg)
print("Test accuracy:", accuracy.eval({X: X_test, y: y_test}))