diff --git a/biolink-model.shacl.ttl b/biolink-model.shacl.ttl index 769588fbde..06661a7e0f 100644 --- a/biolink-model.shacl.ttl +++ b/biolink-model.shacl.ttl @@ -12,55 +12,59 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of a chromatinized genome that has been measured to be more accessible to an enzyme such as DNase-I or Tn5 Transpose" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 11 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -69,57 +73,31 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:AccessibleDnaRegion . biolink:Activity a sh:NodeShape ; sh:closed true ; sh:description "An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -128,7 +106,29 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ] ; sh:targetClass biolink:Activity . biolink:ActivityAndBehavior a sh:NodeShape ; @@ -140,34 +140,28 @@ biolink:ActivityAndBehavior a sh:NodeShape ; biolink:AdministrativeEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 4 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], @@ -175,264 +169,205 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:AdministrativeEntity . biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . - -biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at an earlier time" ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ] ; + sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . + +biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:AnatomicalEntity ; sh:description "the structure at a later time" ; sh:maxCount 1 ; @@ -440,33 +375,42 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -477,25 +421,41 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -503,198 +463,238 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the structure at an earlier time" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ] ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:AnatomicalEntity ; - sh:description "the whole" ; + sh:property [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the part" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "the whole" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the part" ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . biolink:Annotation a sh:NodeShape ; @@ -707,11 +707,24 @@ biolink:Article a sh:NodeShape ; sh:closed true ; sh:description "a piece of writing on a particular topic presented as a stand-alone section of a larger publication " ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:authors ], + sh:property [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:volume ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:issue ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -722,194 +735,225 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 16 ; - sh:path biolink:synonym ], + sh:order 18 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:order 20 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:published_in ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 7 ; sh:path biolink:keywords ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path dct:description ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 21 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:rights ], + sh:order 15 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 17 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 16 ; + sh:path biolink:synonym ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:authors ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 5 ; sh:path biolink:pages ], [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iso_abbreviation ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ] ; + sh:order 11 ; + sh:path biolink:rights ] ; sh:targetClass biolink:Article . biolink:Association a sh:NodeShape ; sh:closed true ; sh:description "A typed association between two entities, supported by evidence" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -917,116 +961,79 @@ biolink:Association a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ] ; sh:targetClass biolink:Association . biolink:Bacterium a sh:NodeShape ; sh:closed true ; sh:description "A member of a group of unicellular microorganisms lacking a nuclear membrane, that reproduce by binary fission and are often motile." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -1036,143 +1043,101 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:Bacterium . biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:BehavioralFeature ; - sh:description "behavioral feature that is the object of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:class biolink:Behavior ; sh:description "behavior that is the subject of the association" ; sh:maxCount 1 ; @@ -1180,107 +1145,126 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:severity_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 39 ; sh:path biolink:onset_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_total ], + [ sh:class biolink:BehavioralFeature ; + sh:description "behavioral feature that is the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_percentage ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ] ; + sh:order 31 ; + sh:path rdfs:label ] ; sh:targetClass biolink:BehaviorToBehavioralFeatureAssociation . biolink:BehavioralExposure a sh:NodeShape ; sh:closed true ; sh:description "A behavioral exposure is a factor relating to behavior impacting an individual." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -1290,48 +1274,64 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:path rdf:type ] ; sh:targetClass biolink:BehavioralExposure . biolink:BehavioralOutcome a sh:NodeShape ; @@ -1343,52 +1343,20 @@ biolink:BehavioralOutcome a sh:NodeShape ; biolink:BiologicalEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -1400,53 +1368,74 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:order 9 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:BiologicalEntity . biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:closed true ; sh:description "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path biolink:id ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_output ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 14 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -1456,98 +1445,109 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:enabled_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_output ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_input ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; - sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:BiologicalProcessOrActivity . biolink:BioticExposure a sh:NodeShape ; sh:closed true ; sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -1563,22 +1563,43 @@ biolink:Book a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "mesh terms tagging a publication" ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:license ], + [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "Books should have industry-standard identifier such as from ISBN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'book'." ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; @@ -1588,50 +1609,23 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:creation_date ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'book'." ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:rights ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], @@ -1640,51 +1634,40 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "Books should have industry-standard identifier such as from ISBN." ; - sh:maxCount 1 ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ] ; + sh:order 17 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Book . biolink:BookChapter a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 13 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 15 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:order 19 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "chapter of a book" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path biolink:chapter ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 4 ; - sh:path biolink:pages ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:creation_date ], [ sh:description "mesh terms tagging a publication" ; sh:order 7 ; sh:path biolink:mesh_terms ], @@ -1693,74 +1676,91 @@ biolink:BookChapter a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:authors ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "chapter of a book" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:chapter ], + sh:order 12 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:license ], + sh:order 19 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 4 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:volume ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 13 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:format ], + sh:order 17 ; + sh:path biolink:iri ], [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:published_in ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 15 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ] ; - sh:targetClass biolink:BookChapter . - -biolink:CaseToEntityAssociationMixin a sh:NodeShape ; + sh:order 9 ; + sh:path biolink:license ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:id ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:BookChapter . + +biolink:CaseToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An abstract association for use where the case is the subject" ; sh:ignoredProperties ( rdf:type ) ; @@ -1770,359 +1770,295 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 37 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Case ; - sh:description "the case (e.g. patient) that has the property" ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:has_count ], + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:severity_qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 28 ; + sh:path biolink:iri ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:onset_qualifier ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_percentage ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ] ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:has_count ] ; sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:BiologicalSex ; + sh:property [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to cause the disease." ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -2132,90 +2068,150 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:timepoint ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:RetrievalSource ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:severity_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; - sh:path biolink:retrieval_source_ids ] ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to cause the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_total ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:CausalGeneToDiseaseAssociation . biolink:Cell a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -2234,47 +2230,35 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Cell . biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -2282,64 +2266,53 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:severity_qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:CellLine ; - sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -2351,34 +2324,27 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -2388,96 +2354,112 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "The relationship to the disease" ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 34 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:CellLine ; + sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:severity_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -2485,124 +2467,142 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:qualifiers ] ; + sh:path biolink:qualifiers ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; @@ -2615,26 +2615,18 @@ biolink:CellularOrganism a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; @@ -2644,6 +2636,9 @@ biolink:CellularOrganism a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -2653,74 +2648,114 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:CellularOrganism . biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:iri ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 15 ; - sh:path rdf:object ], + sh:order 24 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:knowledge_source ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 42 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 39 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:subject_category ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:timepoint ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:qualifiers ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 10 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:subject_category_closure ], + [ sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 43 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 37 ; + sh:path biolink:object_label_closure ], + [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 36 ; @@ -2730,96 +2765,88 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 45 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 38 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 41 ; - sh:path biolink:category ], + sh:order 25 ; + sh:path biolink:original_subject ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 42 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 23 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualified_predicate ], + sh:order 27 ; + sh:path biolink:original_object ], + [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:qualifier ], + sh:order 34 ; + sh:path biolink:subject_namespace ], [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], + sh:order 40 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:original_subject ], + sh:order 12 ; + sh:path biolink:qualified_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 23 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:AnatomicalEntity ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:retrieval_source_ids ], + sh:order 22 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 14 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 39 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:original_predicate ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 41 ; + sh:path biolink:category ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2828,138 +2855,136 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 13 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:object_category_closure ], + sh:order 17 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 30 ; sh:path biolink:subject_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:qualifiers ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 37 ; - sh:path biolink:object_label_closure ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 15 ; + sh:path rdf:object ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:object_namespace ], - [ sh:in ( "metabolite" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:order 45 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:causal_mechanism_qualifier ] ; + sh:order 44 ; + sh:path dct:description ] ; sh:targetClass biolink:ChemicalAffectsGeneAssociation . biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2967,67 +2992,29 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3036,69 +3023,168 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:object_category_closure ] ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ] ; sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "A regulatory relationship between two genes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:description "the direction is always from regulator to regulated" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:object_direction_qualifier ], + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -3106,74 +3192,35 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:order 16 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3182,65 +3229,18 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:order 3 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "the direction is always from regulator to regulated" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ] ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . biolink:ChemicalEntityOrProteinOrPolypeptide a sh:NodeShape ; @@ -3259,22 +3259,14 @@ biolink:ChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A chemical exposure is an intake of a particular chemical entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -3282,150 +3274,183 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_attribute_type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 2 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path biolink:has_quantitative_value ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:ChemicalExposure . biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:closed true ; sh:description "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 9 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:original_object ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_evidence ], + sh:order 8 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 34 ; - sh:path biolink:id ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 18 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_evidence ], + [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:in ( "metabolite" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:original_predicate ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 10 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 30 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:subject_label_closure ], + sh:order 7 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:negated ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 23 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:publications ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 36 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:timepoint ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:subject_context_qualifier ], + sh:order 6 ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:object_category_closure ], [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; sh:order 5 ; @@ -3434,107 +3459,82 @@ biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category ], + sh:order 24 ; + sh:path biolink:object_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ], - [ sh:in ( "metabolite" ) ; + sh:order 3 ; + sh:path biolink:subject_context_qualifier ], + [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:subject ], + sh:order 39 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 18 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_closure ], [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:subject_part_qualifier ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 36 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 37 ; - sh:path rdf:type ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path rdf:predicate ], + sh:order 16 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 34 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 37 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 10 ; + sh:path rdf:object ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 40 ; sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 32 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:subject_category_closure ] ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:ChemicalGeneInteractionAssociation . biolink:ChemicalOrDrugOrTreatment a sh:NodeShape ; @@ -3546,20 +3546,30 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -3571,16 +3581,11 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -3588,108 +3593,98 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:FDA_adverse_event_level ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -3698,76 +3693,37 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 1 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ] ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 12 ; @@ -3777,6 +3733,17 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -3789,52 +3756,42 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -3842,6 +3799,38 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 29 ; sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; @@ -3852,327 +3841,236 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:FDA_adverse_event_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ] ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ] ; - sh:targetClass biolink:ChemicalToChemicalAssociation . - -biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description """A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: - IF - R has-input C1 AND - R has-output C2 AND - R enabled-by P AND - R type Reaction - THEN - C1 derives-into C2 <>""" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the downstream chemical entity" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:catalyst_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; + sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:ChemicalEntity ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:ChemicalToChemicalAssociation . + +biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description """A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: + IF + R has-input C1 AND + R has-output C2 AND + R enabled-by P AND + R type Reaction + THEN + C1 derives-into C2 <>""" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:ChemicalEntity ; sh:description "the upstream chemical entity" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -4184,149 +4082,183 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the downstream chemical entity" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ] ; - sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . - -biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; + sh:order 22 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 15 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 13 ; sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:catalyst_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; + sh:order 16 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ] ; + sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . + +biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "the disease or phenotype that is affected by the chemical" ; sh:maxCount 1 ; @@ -4335,32 +4267,13 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -4368,99 +4281,88 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ] ; - sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . - -biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:description "An interaction between a chemical entity and another entity" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:ChemicalToEntityAssociationMixin . - -biolink:ChemicalToPathwayAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a chemical entity and a biological process or pathway." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -4471,135 +4373,233 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + +biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:description "An interaction between a chemical entity and another entity" ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:ChemicalToEntityAssociationMixin . + +biolink:ChemicalToPathwayAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a chemical entity and a biological process or pathway." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity that is affecting the pathway" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that is affected by the chemical" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that is affected by the chemical" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity that is affecting the pathway" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ] ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:ChemicalToPathwayAssociation . biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a chi squared analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:date ; + sh:property [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -4609,88 +4609,88 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ChiSquaredAnalysisResult . biolink:ClinicalCourse a sh:NodeShape ; sh:closed true ; sh:description "The course a disease typically takes from its onset, progression in time, and eventual resolution or death of the affected individual" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -4700,44 +4700,47 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ClinicalCourse . biolink:ClinicalEntity a sh:NodeShape ; sh:closed true ; sh:description "Any entity or process that exists in the clinical domain and outside the biological realm. Diseases are placed under biological entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -4747,63 +4750,89 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; sh:targetClass biolink:ClinicalEntity . biolink:ClinicalFinding a sh:NodeShape ; sh:closed true ; sh:description "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:ClinicalAttribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; @@ -4813,136 +4842,152 @@ biolink:ClinicalFinding a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:order 11 ; + sh:path dct:description ] ; + sh:targetClass biolink:ClinicalFinding . + +biolink:ClinicalIntervention a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:ClinicalFinding . - -biolink:ClinicalIntervention a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:ClinicalIntervention . + +biolink:ClinicalMeasurement a sh:NodeShape ; + sh:closed true ; + sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:order 6 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:ClinicalIntervention . - -biolink:ClinicalMeasurement a sh:NodeShape ; - sh:closed true ; - sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; - sh:path biolink:xref ], + sh:path biolink:xref ] ; + sh:targetClass biolink:ClinicalMeasurement . + +biolink:ClinicalModifier a sh:NodeShape ; + sh:closed true ; + sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -4952,36 +4997,24 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; - sh:targetClass biolink:ClinicalMeasurement . - -biolink:ClinicalModifier a sh:NodeShape ; - sh:closed true ; - sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; @@ -4994,15 +5027,9 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -5010,48 +5037,24 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:ClinicalModifier . biolink:ClinicalTrial a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -5060,81 +5063,53 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:ClinicalTrial . biolink:CodingSequence a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -5144,51 +5119,74 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ] ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ] ; sh:targetClass biolink:CodingSequence . biolink:Cohort a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group who share common characteristics. A cohort 'study' is a particular form of longitudinal study that samples a cohort, performing a cross-section at intervals through time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -5198,55 +5196,48 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Cohort . biolink:CommonDataElement a sh:NodeShape ; sh:closed true ; sh:description "A Common Data Element (CDE) is a standardized, precisely defined question, paired with a set of allowable responses, used systematically across different sites, studies, or clinical trials to ensure consistent data collection. Multiple CDEs (from one or more Collections) can be curated into Forms. (https://cde.nlm.nih.gov/home)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -5255,213 +5246,227 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ] ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:CommonDataElement . biolink:ComplexChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A complex chemical exposure is an intake of a chemical mixture (e.g. gasoline), other than a drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ComplexChemicalExposure . biolink:ComplexMolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A complex molecular mixture is a chemical mixture composed of two or more molecular entities with unknown concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:highest_FDA_approval_status ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:trade_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:id ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:is_supplement ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -5470,30 +5475,35 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:ComplexMolecularMixture . biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a concept count analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -5503,79 +5513,88 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ConceptCountAnalysisResult . biolink:ConfidenceLevel a sh:NodeShape ; sh:closed true ; sh:description "Level of confidence in a statement" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -5586,40 +5605,21 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; + sh:path biolink:creation_date ] ; sh:targetClass biolink:ConfidenceLevel . biolink:ContributorAssociation a sh:NodeShape ; @@ -5627,65 +5627,71 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:description "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Agent ; + sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Agent ; - sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -5693,9 +5699,30 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:InformationContentEntity ; sh:description "information content entity which an agent has helped realise" ; sh:maxCount 1 ; @@ -5703,321 +5730,300 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:ContributorAssociation . biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:frequency_qualifier ], [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 2 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:severity_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:order 29 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 40 ; + sh:path biolink:severity_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to correlate with the disease." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to correlate with the disease." ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:frequency_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:onset_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_total ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ] ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . biolink:DatasetSummary a sh:NodeShape ; sh:closed true ; sh:description "an item that holds summary level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:rights ], + sh:order 5 ; + sh:path biolink:creation_date ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], @@ -6025,101 +6031,98 @@ biolink:DatasetSummary a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:source_web_page ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:id ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path schema1:logo ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], + sh:order 4 ; + sh:path biolink:format ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 14 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 3 ; + sh:path biolink:rights ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:creation_date ], + sh:order 15 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:source_web_page ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path schema1:logo ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:DatasetSummary . biolink:DatasetVersion a sh:NodeShape ; sh:closed true ; sh:description "an item that holds version level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ], + sh:order 15 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:license ], [ sh:class biolink:DatasetDistribution ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path dct:distribution ], + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:ingest_date ], - [ sh:class biolink:Dataset ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_dataset ], + sh:order 4 ; + sh:path biolink:rights ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -6129,67 +6132,62 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 13 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Dataset ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_dataset ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:creation_date ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 12 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:rights ], + sh:order 5 ; + sh:path biolink:format ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:format ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path rdfs:label ] ; + sh:order 6 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:DatasetVersion . biolink:DiagnosticAid a sh:NodeShape ; sh:closed true ; sh:description "A device or substance used to help diagnose disease or injury" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -6199,70 +6197,95 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 7 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:DiagnosticAid . biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:closed true ; sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -6275,33 +6298,10 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:path dct:description ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureExposure . biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; @@ -6320,134 +6320,142 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape sh:description "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:GeneticInheritance ; - sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:GeneticInheritance ; + sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -6455,33 +6463,25 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; @@ -6489,97 +6489,69 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "anatomical entity in which the disease or feature is found." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "anatomical entity in which the disease or feature is found." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -6587,70 +6559,98 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; @@ -6662,42 +6662,76 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and a disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -6709,42 +6743,6 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; @@ -6754,208 +6752,152 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:order 23 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ] ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:DiseaseToExposureEventAssociation . biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_percentage ], + sh:order 35 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 38 ; sh:path biolink:severity_qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -6964,102 +6906,168 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 3 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a point in time" ; + [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 37 ; + sh:path biolink:has_percentage ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_total ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:sex_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 39 ; sh:path biolink:onset_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ] ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:DiseaseToPhenotypicFeatureAssociation . biolink:DrugExposure a sh:NodeShape ; sh:closed true ; sh:description "A drug exposure is an intake of a particular drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7067,36 +7075,24 @@ biolink:DrugExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path biolink:has_quantitative_value ], + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -7106,60 +7102,72 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:DrugExposure . biolink:DrugLabel a sh:NodeShape ; sh:closed true ; sh:description "a document accompanying a drug or its container that provides written, printed or graphic information about the drug, including drug contents, specific instructions or warnings for administration, storage and disposal instructions, etc. " ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:property [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:full_name ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:format ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:creation_date ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 1 ; sh:path biolink:pages ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:license ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -7169,40 +7177,32 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ] ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:rights ] ; sh:targetClass biolink:DrugLabel . biolink:DrugToEntityAssociationMixin a sh:NodeShape ; @@ -7215,33 +7215,80 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a drug and a gene or gene product." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "a point in time" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the gene or gene product that is affected by the drug" ; sh:maxCount 1 ; @@ -7250,183 +7297,112 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; sh:targetClass biolink:DrugToGeneAssociation . biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:closed true ; sh:description "drug to gene interaction exposure is a drug exposure is where the interactions of the drug with specific genes are known to constitute an 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], + sh:property [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 11 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 8 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:order 4 ; + sh:path biolink:has_attribute_type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:order 3 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -7436,456 +7412,480 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 12 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:full_name ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:timepoint ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 8 ; + sh:path biolink:provided_by ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_attribute_type ] ; + sh:order 5 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:iri ] ; sh:targetClass biolink:DrugToGeneInteractionExposure . biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 41 ; sh:path biolink:onset_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 40 ; sh:path biolink:severity_qualifier ], + [ sh:description "connects an association to an instance of supporting evidence" ; + sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ] ; + sh:targetClass biolink:DruggableGeneToDiseaseAssociation . + +biolink:Entity a sh:NodeShape ; + sh:closed false ; + sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; + sh:order 0 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:description "connects an association to an instance of supporting evidence" ; - sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:DruggableGeneToDiseaseAssociation . - -biolink:Entity a sh:NodeShape ; - sh:closed false ; - sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iri ], + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], + sh:order 3 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 5 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 3 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 2 ; - sh:path biolink:category ] ; + sh:order 1 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Entity . biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:description "" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_approval_status ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ] ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:description "" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:FDA_approval_status ] ; sh:targetClass biolink:EntityToDiseaseAssociation . biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; @@ -7898,16 +7898,16 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:onset_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:severity_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:frequency_qualifier ] ; + sh:path biolink:severity_qualifier ] ; sh:targetClass biolink:EntityToDiseaseAssociationMixin . biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; @@ -7929,18 +7929,18 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:frequency_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:severity_qualifier ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:onset_qualifier ] ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:severity_qualifier ] ; sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; @@ -7952,18 +7952,23 @@ biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -7973,172 +7978,154 @@ biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_approval_status ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:FDA_approval_status ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ] ; + sh:path biolink:category ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_count ], - [ sh:maxCount 1 ; + sh:property [ sh:maxCount 1 ; sh:order 3 ; sh:path biolink:has_quotient ], [ sh:class biolink:SeverityValue ; @@ -8147,23 +8134,36 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:severity_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:onset_qualifier ], + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_count ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:has_total ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ] ; + sh:order 6 ; + sh:path biolink:onset_qualifier ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:has_percentage ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociationMixin . biolink:EnvironmentalExposure a sh:NodeShape ; @@ -8176,112 +8176,86 @@ biolink:EnvironmentalExposure a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:EnvironmentalExposure . - -biolink:EnvironmentalFeature a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:order 6 ; + sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ] ; + sh:targetClass biolink:EnvironmentalExposure . + +biolink:EnvironmentalFeature a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -8291,58 +8265,57 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:EnvironmentalFeature . - -biolink:EnvironmentalFoodContaminant a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 8 ; sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; + sh:order 4 ; sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 2 ; sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:order 9 ; + sh:path dct:description ] ; + sh:targetClass biolink:EnvironmentalFeature . + +biolink:EnvironmentalFoodContaminant a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:is_toxic ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -8358,37 +8331,87 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 1 ; - sh:path biolink:available_from ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ] ; + sh:path biolink:available_from ] ; sh:targetClass biolink:EnvironmentalFoodContaminant . biolink:EnvironmentalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -8398,36 +8421,13 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; + sh:order 2 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:EnvironmentalProcess . biolink:EpidemiologicalOutcome a sh:NodeShape ; @@ -8449,128 +8449,136 @@ biolink:Event a sh:NodeShape ; sh:closed true ; sh:description "Something that happens at a given place and time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Event . biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:closed true ; sh:description "A transcript is formed from multiple exons" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:Exon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8578,19 +8586,6 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:class biolink:Transcript ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8598,36 +8593,48 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -8635,38 +8642,31 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:ExonToTranscriptRelationship . biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; @@ -8674,62 +8674,33 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:description "An association between an exposure event and an outcome." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:population_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], + sh:order 8 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:temporal_context_qualifier ], - [ sh:description "a point in time" ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8737,31 +8708,20 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], + sh:order 33 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:population_context_qualifier ], [ sh:class biolink:Outcome ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8769,184 +8729,168 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:BlankNode ; sh:order 4 ; sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:temporal_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], + sh:order 10 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ] ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:ExposureEventToOutcomeAssociation . biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:onset_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 37 ; + sh:path biolink:has_percentage ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -8954,221 +8898,309 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 29 ; sh:path biolink:category ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_total ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 1 ; + sh:path rdf:subject ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 34 ; - sh:path biolink:has_count ] ; + sh:path biolink:has_count ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:severity_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:ExposureEventToPhenotypicFeatureAssociation . biolink:Food a sh:NodeShape ; sh:closed true ; sh:description "A substance consumed by a living organism as a source of nutrition" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], [ sh:class biolink:ChemicalMixture ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], + sh:order 4 ; + sh:path biolink:trade_name ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ] ; + sh:targetClass biolink:Food . + +biolink:FoodAdditive a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; + sh:order 1 ; sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ] ; - sh:targetClass biolink:Food . - -biolink:FoodAdditive a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -9178,50 +9210,18 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_chemical_role ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; @@ -9248,7 +9248,15 @@ biolink:FrequencyQualifierMixin a sh:NodeShape ; biolink:FrequencyQuantifier a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:integer ; + sh:property [ sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 1 ; @@ -9256,124 +9264,72 @@ biolink:FrequencyQuantifier a sh:NodeShape ; [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:has_percentage ], - [ sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_count ] ; + sh:path biolink:has_percentage ] ; sh:targetClass biolink:FrequencyQuantifier . biolink:FunctionalAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -9381,69 +9337,112 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:FunctionalAssociation . biolink:Fungus a sh:NodeShape ; sh:closed true ; sh:description "A kingdom of eukaryotic, heterotrophic organisms that live as saprobes or parasites, including mushrooms, yeasts, smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi refer to those that grow as multicellular colonies (mushrooms and molds)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; @@ -9452,24 +9451,6 @@ biolink:Fungus a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -9479,203 +9460,204 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Fungus . biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 14 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:timepoint ], + sh:order 39 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:qualifier ], + sh:order 25 ; + sh:path biolink:original_subject ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 45 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:qualifiers ], + sh:order 9 ; + sh:path biolink:object_context_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 28 ; + sh:path biolink:subject_category ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:knowledge_source ], + sh:order 10 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:iri ], [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path rdf:predicate ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 43 ; sh:path rdfs:label ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 23 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:original_subject ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], + sh:order 12 ; + sh:path biolink:qualified_predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 41 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 37 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 30 ; + sh:path biolink:subject_closure ], [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:subject_category_closure ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_evidence ], + sh:order 11 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 37 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 36 ; sh:path biolink:subject_label_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 41 ; - sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:publications ], + sh:order 18 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:original_object ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 29 ; sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 45 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 23 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 44 ; + sh:path dct:description ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:primary_knowledge_source ], + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 30 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 42 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualified_predicate ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9683,124 +9665,127 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:BlankNode ; sh:order 13 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 44 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:original_object ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 26 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 17 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 16 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 39 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:object_namespace ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:subject_category ] ; + sh:order 21 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:GeneAffectsChemicalAssociation . biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -9808,63 +9793,99 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 31 ; sh:path biolink:category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:onset_qualifier ], + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path rdf:predicate ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:frequency_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:severity_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:onset_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 37 ; + sh:path biolink:has_total ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:order 34 ; + sh:path dct:description ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; @@ -9872,21 +9893,15 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path rdf:subject ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 39 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -9894,52 +9909,37 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 5 ; sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 42 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:severity_qualifier ] ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:GeneAsAModelOfDiseaseAssociation . biolink:GeneExpressionMixin a sh:NodeShape ; @@ -9958,18 +9958,18 @@ biolink:GeneExpressionMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:expression_site ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:quantifier_qualifier ] ; + sh:path biolink:quantifier_qualifier ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ] ; sh:targetClass biolink:GeneExpressionMixin . biolink:GeneGroupingMixin a sh:NodeShape ; @@ -9987,40 +9987,58 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 16 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 42 ; + sh:path biolink:onset_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path dct:description ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_object ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -10028,48 +10046,39 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], + [ sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -10080,24 +10089,15 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 5 ; sh:path rdf:predicate ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:object_direction_qualifier ], + sh:order 7 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; @@ -10105,33 +10105,48 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:BlankNode ; sh:order 4 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 41 ; sh:path biolink:severity_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -10139,102 +10154,111 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 43 ; sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ] ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ] ; sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . biolink:GeneProductIsoformMixin a sh:NodeShape ; sh:closed false ; sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:GeneProductIsoformMixin . biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -10242,212 +10266,233 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 31 ; sh:path biolink:category ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 42 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "a point in time" ; + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 41 ; sh:path biolink:onset_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], + sh:order 40 ; + sh:path biolink:severity_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 37 ; + sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:subject ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ] ; + sh:targetClass biolink:GeneToDiseaseAssociation . + +biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path rdf:object ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; - sh:path biolink:negated ] ; - sh:targetClass biolink:GeneToDiseaseAssociation . - -biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:path biolink:negated ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 37 ; + sh:path biolink:has_total ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; @@ -10455,197 +10500,152 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path rdf:subject ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 41 ; + sh:path biolink:onset_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 2 ; + sh:path biolink:sex_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 40 ; sh:path biolink:severity_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ] ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ] ; sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . biolink:GeneToEntityAssociationMixin a sh:NodeShape ; @@ -10661,238 +10661,206 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "can be used to indicate magnitude, or also ranking" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:quantifier_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:LifeStage ; sh:description "stage at which the gene is expressed in the site" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:stage_qualifier ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "expression relationship" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "can be used to indicate magnitude, or also ranking" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:quantifier_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 34 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which the gene is expressed" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:subject ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which the gene is expressed" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ] ; + sh:order 6 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:GeneToExpressionSiteAssociation . -biolink:GeneToGeneAssociation a sh:NodeShape ; - sh:closed false ; - sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; +biolink:GeneToGeneAssociation a sh:NodeShape ; + sh:closed false ; + sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -10900,49 +10868,63 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -10954,621 +10936,545 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:GeneToGeneAssociation . - -biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; + sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 32 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:knowledge_source ], + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ] ; + sh:targetClass biolink:GeneToGeneAssociation . + +biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], + sh:order 10 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:class biolink:LifeStage ; sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:stage_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:GeneToGeneCoexpressionAssociation . - -biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:GeneFamily ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; + sh:order 22 ; sh:path biolink:object_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 6 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 32 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 34 ; sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:expression_site ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; + sh:order 14 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 15 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 7 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 4 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 18 ; sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 36 ; sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:GeneToGeneCoexpressionAssociation . + +biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "membership of the gene in the given gene family." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; - sh:targetClass biolink:GeneToGeneFamilyAssociation . - -biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "homology relationship type" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "membership of the gene in the given gene family." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:GeneFamily ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ] ; + sh:targetClass biolink:GeneToGeneFamilyAssociation . + +biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:GeneToGeneHomologyAssociation . - -biolink:GeneToGeneProductRelationship a sh:NodeShape ; - sh:closed true ; - sh:description "A gene is transcribed and potentially translated to a gene product" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "homology relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -11584,19 +11490,11 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; @@ -11608,55 +11506,134 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; + sh:targetClass biolink:GeneToGeneHomologyAssociation . + +biolink:GeneToGeneProductRelationship a sh:NodeShape ; + sh:closed true ; + sh:description "A gene is transcribed and potentially translated to a gene product" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:GeneProductMixin ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -11664,53 +11641,76 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:GeneProductMixin ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:GeneToGeneProductRelationship . biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -11721,108 +11721,72 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Gene ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -11830,111 +11794,62 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:GeneToGoTermAssociation . - -biolink:GeneToPathwayAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a gene or gene product and a biological process or pathway." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product entity that participates or influences the pathway" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -11942,37 +11857,78 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:GeneToGoTermAssociation . + +biolink:GeneToPathwayAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a gene or gene product and a biological process or pathway." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -11980,60 +11936,104 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product entity that participates or influences the pathway" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that includes or is affected by the gene or gene product" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that includes or is affected by the gene or gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; @@ -12043,257 +12043,256 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:property [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 37 ; + sh:path biolink:has_total ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:onset_qualifier ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], + [ sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_quotient ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:order 36 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 5 ; + sh:path rdf:object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:severity_qualifier ], + sh:order 0 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:severity_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_total ], - [ sh:description "a human-readable description of an entity" ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:onset_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ] ; + sh:path rdf:predicate ] ; sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . biolink:Genome a sh:NodeShape ; sh:closed true ; sh:description "A genome is the sum of genetic material within a cell or virion." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:property [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], @@ -12301,13 +12300,18 @@ biolink:Genome a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -12316,61 +12320,38 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Genome . biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:closed true ; sh:description "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 14 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 12 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:has_biological_sequence ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 8 ; sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 14 ; - sh:path biolink:synonym ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -12378,44 +12359,63 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_gene_or_gene_product ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:full_name ] ; + sh:order 1 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:GenomicBackgroundExposure . biolink:GenomicEntity a sh:NodeShape ; @@ -12431,60 +12431,91 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:closed true ; sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:genome_build ], - [ sh:description "a point in time" ; + sh:order 3 ; + sh:path biolink:strand ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:object_closure ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:end_interbase_coordinate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 0 ; + sh:path biolink:start_interbase_coordinate ], + [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; + sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:genome_build ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path biolink:iri ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -12492,60 +12523,36 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 33 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; - sh:in ( "+" "-" "." "?" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:strand ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 8 ; + sh:path biolink:negated ], + [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; + sh:in ( "0" "1" "2" ) ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], + sh:order 4 ; + sh:path biolink:phase ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -12556,114 +12563,133 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 6 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; - sh:in ( "0" "1" "2" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 7 ; + sh:path rdf:object ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path rdf:subject ], [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; + sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:start_interbase_coordinate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:order 1 ; + sh:path biolink:end_interbase_coordinate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ] ; sh:targetClass biolink:GenomicSequenceLocalization . biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:severity_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:description "The relationship to the disease" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:Genotype ; sh:description "A genotype that has a role in modeling the disease." ; sh:maxCount 1 ; @@ -12671,32 +12697,6 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -12708,153 +12708,122 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 35 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . - -biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 34 ; + sh:path biolink:onset_qualifier ] ; + sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . + +biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Genotype ; + sh:description "a genotype that is associated in some way with a disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Disease ; sh:description "a disease that is associated with that genotype" ; sh:maxCount 1 ; @@ -12862,131 +12831,162 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:onset_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:onset_qualifier ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Genotype ; - sh:description "a genotype that is associated in some way with a disease state" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:severity_qualifier ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ] ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:GenotypeToDiseaseAssociation . biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; @@ -12999,23 +12999,74 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "the relationship type used to connect genotype to gene" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Gene ; + sh:description "gene implicated in genotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; @@ -13026,19 +13077,16 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -13046,65 +13094,57 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Genotype ; sh:description "parent genotype" ; sh:maxCount 1 ; @@ -13112,82 +13152,53 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Gene ; - sh:description "gene implicated in genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; + sh:path dct:description ] ; sh:targetClass biolink:GenotypeToGeneAssociation . biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; @@ -13197,86 +13208,85 @@ biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:Genotype ; + sh:description "child genotype" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 31 ; + sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -13284,176 +13294,119 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:Genotype ; - sh:description "child genotype" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:GenotypeToGenotypePartAssociation . biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:has_count ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_total ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:onset_qualifier ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 37 ; + sh:path biolink:has_percentage ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 40 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Genotype ; sh:description "genotype that is associated with the phenotypic feature" ; sh:maxCount 1 ; @@ -13461,78 +13414,125 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 1 ; sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_total ], + sh:order 34 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:sex_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_percentage ], - [ sh:description "a human-readable description of an entity" ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 38 ; + sh:path biolink:severity_qualifier ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 39 ; + sh:path biolink:onset_qualifier ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -13544,135 +13544,128 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between a genotype and a sequence variant." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:SequenceVariant ; - sh:description "gene implicated in genotype" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:Genotype ; sh:description "parent genotype" ; sh:maxCount 1 ; @@ -13680,86 +13673,99 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "gene implicated in genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:GenotypeToVariantAssociation . biolink:GenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the genotypic sex of the individual, based upon genotypic composition of sex chromosomes." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -13767,19 +13773,13 @@ biolink:GenotypicSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ] ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:GenotypicSex . biolink:GeographicExposure a sh:NodeShape ; @@ -13791,39 +13791,26 @@ biolink:GeographicExposure a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; @@ -13831,11 +13818,17 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -13843,46 +13836,34 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:GeographicExposure . biolink:GeographicLocation a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "latitude" ; + sh:property [ sh:description "latitude" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:latitude ], @@ -13892,21 +13873,18 @@ biolink:GeographicLocation a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "longitude" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:longitude ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -13916,52 +13894,67 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "longitude" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:longitude ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:GeographicLocation . biolink:GeographicLocationAtTime a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates, for a particular time" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "latitude" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:latitude ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -13971,52 +13964,74 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "latitude" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:latitude ], [ sh:description "longitude" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:longitude ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ] ; sh:targetClass biolink:GeographicLocationAtTime . biolink:GrossAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -14024,66 +14039,67 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:GrossAnatomicalStructure . biolink:Haplotype a sh:NodeShape ; sh:closed true ; sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -14093,31 +14109,15 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:Haplotype . biolink:Hospitalization a sh:NodeShape ; @@ -14126,34 +14126,16 @@ biolink:Hospitalization a sh:NodeShape ; sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -14163,15 +14145,33 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 7 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Hospitalization . biolink:HospitalizationOutcome a sh:NodeShape ; @@ -14184,18 +14184,10 @@ biolink:Human a sh:NodeShape ; sh:closed true ; sh:description "A member of the the species Homo sapiens." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; @@ -14205,13 +14197,39 @@ biolink:Human a sh:NodeShape ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -14221,155 +14239,84 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:Human . biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; sh:closed true ; sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -14377,87 +14324,129 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . biolink:Invertebrate a sh:NodeShape ; sh:closed true ; sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -14467,169 +14456,157 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Invertebrate . biolink:JournalArticle a sh:NodeShape ; sh:closed true ; sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 7 ; - sh:path biolink:keywords ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 22 ; sh:path dct:description ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 19 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:published_in ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 5 ; - sh:path biolink:pages ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], - [ sh:datatype xsd:string ; - sh:order 20 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 9 ; sh:path biolink:xref ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:issue ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:full_name ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 5 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:summary ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 16 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 2 ; + sh:path biolink:volume ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path rdfs:label ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], + sh:order 12 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iso_abbreviation ], + sh:order 18 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 17 ; - sh:path biolink:id ] ; - sh:targetClass biolink:JournalArticle . - -biolink:LogOddsAnalysisResult a sh:NodeShape ; - sh:closed true ; - sh:description "A result of a log odds ratio analysis." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], + [ sh:description "mesh terms tagging a publication" ; sh:order 8 ; - sh:path biolink:id ], + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:order 11 ; + sh:order 20 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path biolink:keywords ] ; + sh:targetClass biolink:JournalArticle . + +biolink:LogOddsAnalysisResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of a log odds ratio analysis." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -14639,74 +14616,106 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:LogOddsAnalysisResult . biolink:MacromolecularComplex a sh:NodeShape ; sh:closed true ; sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -14714,50 +14723,77 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:MacromolecularComplex . biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:closed true ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -14766,43 +14802,70 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:BiologicalProcess ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -14810,89 +14873,26 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ] ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; @@ -14900,14 +14900,29 @@ biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:CellularComponent ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -14915,125 +14930,96 @@ biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:CellularComponent ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15041,27 +15027,41 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ] ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; @@ -15074,22 +15074,32 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:closed true ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15097,201 +15107,184 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:MolecularActivity ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:MolecularActivity ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . biolink:Mammal a sh:NodeShape ; sh:closed true ; sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15300,7 +15293,14 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Mammal . biolink:MappingCollection a sh:NodeShape ; @@ -15319,88 +15319,68 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:description "An association between a material sample and the material entity from which it is derived." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:NamedThing ; sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; sh:maxCount 1 ; @@ -15413,63 +15393,38 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "derivation relationship" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; @@ -15480,94 +15435,107 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; - sh:path biolink:category ] ; - sh:targetClass biolink:MaterialSampleDerivationAssociation . - -biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a material sample and a disease or phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "derivation relationship" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ] ; + sh:targetClass biolink:MaterialSampleDerivationAssociation . + +biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a material sample and a disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15575,81 +15543,113 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; @@ -15661,19 +15661,24 @@ biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; biolink:MicroRNA a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; @@ -15682,15 +15687,17 @@ biolink:MicroRNA a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 10 ; sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15700,25 +15707,18 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:MicroRNA . biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; @@ -15731,221 +15731,130 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:closed true ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:subject_category ] ; - sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . - -biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:path biolink:subject_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -15953,51 +15862,87 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ] ; + sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . + +biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:MolecularActivity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16005,147 +15950,158 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:original_object ] ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:closed true ; sh:description "Association that holds the relationship between a reaction and the pathway it participates in." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:class biolink:Pathway ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16153,6 +16109,40 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16166,9 +16156,33 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; @@ -16177,161 +16191,147 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:primary_knowledge_source ] ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:MolecularActivityToPathwayAssociation . biolink:MolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:property [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; sh:path biolink:xref ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:ChemicalEntity ; + [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], + sh:order 18 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], [ sh:class biolink:ChemicalMixture ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:is_supplement ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ] ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ] ; sh:targetClass biolink:MolecularMixture . biolink:MortalityOutcome a sh:NodeShape ; @@ -16345,40 +16345,39 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:description "" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -16386,73 +16385,71 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16460,85 +16457,65 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ] ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . biolink:NoncodingRNAProduct a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -16548,14 +16525,41 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; @@ -16565,25 +16569,31 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:path biolink:id ] ; sh:targetClass biolink:NoncodingRNAProduct . biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:closed true ; sh:description "A linear nucleotide sequence pattern that is widespread and has, or is conjectured to have, a biological significance. e.g. the TATA box promoter motif, transcription factor binding consensus sequences." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -16593,82 +16603,54 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:NucleicAcidSequenceMotif . biolink:NucleosomeModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 2 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -16678,30 +16660,48 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ] ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ] ; sh:targetClass biolink:NucleosomeModification . biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; @@ -16709,13 +16709,33 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:description "A result of a observed expected frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -16727,50 +16747,30 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ] ; @@ -16786,31 +16786,27 @@ biolink:OrganismAttribute a sh:NodeShape ; sh:closed true ; sh:description "describes a characteristic of an organismal entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -16818,6 +16814,21 @@ biolink:OrganismAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -16827,32 +16838,21 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:OrganismAttribute . biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; @@ -16864,146 +16864,140 @@ biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "predicate describing the relationship between the taxon and the environment" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; - sh:description "the environment in which the organism occurs" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:NamedThing ; + sh:description "the environment in which the organism occurs" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; @@ -17011,150 +17005,142 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:closed false ; sh:description "A relationship between two organism taxon nodes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:property [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OrganismTaxon ; sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; @@ -17162,302 +17148,302 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ] ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + sh:description "the environment in which the two taxa interact" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 0 ; + sh:path biolink:associated_environmental_context ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "the environment in which the two taxa interact" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:associated_environmental_context ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ] ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:closed true ; sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the more general taxon" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more specific taxon" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -17465,57 +17451,19 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -17526,119 +17474,125 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more general taxon" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:subject_category ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . - -biolink:OrganismToOrganismAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "the more specific taxon" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . + +biolink:OrganismToOrganismAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:IndividualOrganism ; + sh:description "An association between two individual organisms." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -17646,33 +17600,33 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:IndividualOrganism ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17681,166 +17635,199 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:IndividualOrganism ; - sh:description "An association between two individual organisms." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:OrganismToOrganismAssociation . biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:severity_qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Onset ; sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 34 ; sh:path biolink:onset_qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:class biolink:OrganismalEntity ; sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; sh:maxCount 1 ; @@ -17848,193 +17835,220 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "The relationship to the disease" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:severity_qualifier ] ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "interaction relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -18045,67 +18059,31 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:id ] ; sh:targetClass biolink:PairwiseGeneToGeneInteraction . biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction at the molecular level between two physical entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:MolecularEntity ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18113,168 +18091,217 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 29 ; sh:path biolink:category ], + [ sh:class biolink:MolecularEntity ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:interacting_molecules_category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:MolecularEntity ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "interaction relationship type" ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:MolecularEntity ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 32 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "interaction relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:interacting_molecules_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ] ; + sh:order 4 ; + sh:path biolink:negated ] ; sh:targetClass biolink:PairwiseMolecularInteraction . biolink:Patent a sh:NodeShape ; sh:closed true ; sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time. " ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:format ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:order 7 ; + sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18284,49 +18311,22 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 13 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ] ; + sh:path biolink:id ] ; sh:targetClass biolink:Patent . biolink:PathognomonicityQuantifier a sh:NodeShape ; @@ -18339,29 +18339,36 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:closed true ; sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; @@ -18372,44 +18379,37 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:PathologicalAnatomicalExposure . biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; @@ -18426,23 +18426,16 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18457,29 +18450,36 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:PathologicalAnatomicalStructure . biolink:PathologicalEntityMixin a sh:NodeShape ; @@ -18492,79 +18492,79 @@ biolink:PathologicalProcess a sh:NodeShape ; sh:closed true ; sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 5 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; + sh:order 13 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:PathologicalProcess . biolink:PathologicalProcessExposure a sh:NodeShape ; @@ -18579,16 +18579,11 @@ biolink:PathologicalProcessExposure a sh:NodeShape ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18604,22 +18599,27 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -18631,17 +18631,17 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ] ; + sh:order 0 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:PathologicalProcessExposure . biolink:PathologicalProcessOutcome a sh:NodeShape ; @@ -18654,20 +18654,20 @@ biolink:Phenomenon a sh:NodeShape ; sh:closed true ; sh:description "a fact or situation that is observed to exist or happen, especially one whose cause or explanation is in question" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18677,49 +18677,39 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Phenomenon . biolink:PhenotypicQuality a sh:NodeShape ; sh:closed true ; sh:description "A property of a phenotype" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; + sh:property [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; @@ -18728,23 +18718,17 @@ biolink:PhenotypicQuality a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -18752,41 +18736,27 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; - sh:targetClass biolink:PhenotypicQuality . - -biolink:PhenotypicSex a sh:NodeShape ; - sh:closed true ; - sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:path biolink:has_qualitative_value ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; @@ -18795,19 +18765,31 @@ biolink:PhenotypicSex a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:PhenotypicQuality . + +biolink:PhenotypicSex a sh:NodeShape ; + sh:closed true ; + sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -18820,26 +18802,28 @@ biolink:PhenotypicSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -18848,7 +18832,23 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ] ; sh:targetClass biolink:PhenotypicSex . biolink:PhysicalEssence a sh:NodeShape ; @@ -18866,50 +18866,11 @@ biolink:PhysicalEssenceOrOccurrent a sh:NodeShape ; biolink:PhysiologicalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; @@ -18918,151 +18879,126 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ] ; - sh:targetClass biolink:PhysiologicalProcess . - -biolink:PlanetaryEntity a sh:NodeShape ; - sh:closed true ; - sh:description "Any entity or process that exists at the level of the whole planet" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; + sh:order 9 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:path biolink:has_output ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; + sh:order 7 ; sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 15 ; sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 13 ; sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 0 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; - sh:targetClass biolink:PlanetaryEntity . + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ] ; + sh:targetClass biolink:PhysiologicalProcess . -biolink:Plant a sh:NodeShape ; +biolink:PlanetaryEntity a sh:NodeShape ; sh:closed true ; - sh:description "" ; + sh:description "Any entity or process that exists at the level of the whole planet" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 5 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 4 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ], + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; + sh:order 3 ; sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; + sh:order 1 ; sh:path biolink:xref ] ; - sh:targetClass biolink:Plant . + sh:targetClass biolink:PlanetaryEntity . -biolink:Polypeptide a sh:NodeShape ; +biolink:Plant a sh:NodeShape ; sh:closed true ; - sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; + sh:description "" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; @@ -19070,10 +19006,29 @@ biolink:Polypeptide a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -19083,35 +19038,57 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ] ; + sh:targetClass biolink:Plant . + +biolink:Polypeptide a sh:NodeShape ; + sh:closed true ; + sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; @@ -19119,9 +19096,32 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:order 9 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Polypeptide . biolink:PopulationToPopulationAssociation a sh:NodeShape ; @@ -19129,115 +19129,116 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:description "An association between a two populations" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:PopulationOfIndividualOrganisms ; sh:description "the population that form the subject of the association" ; sh:maxCount 1 ; @@ -19245,107 +19246,84 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the object of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ] ; sh:targetClass biolink:PopulationToPopulationAssociation . biolink:PosttranslationalModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 1 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -19354,86 +19332,57 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; - sh:targetClass biolink:PosttranslationalModification . - -biolink:PreprintPublication a sh:NodeShape ; - sh:closed true ; - sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path dct:description ] ; + sh:targetClass biolink:PosttranslationalModification . + +biolink:PreprintPublication a sh:NodeShape ; + sh:closed true ; + sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 8 ; @@ -19441,96 +19390,140 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 10 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:order 16 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:rights ] ; sh:targetClass biolink:PreprintPublication . biolink:ProcessedMaterial a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalRole ; + sh:property [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:class biolink:ChemicalMixture ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -19540,55 +19533,69 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ] ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:ProcessedMaterial . biolink:Protein a sh:NodeShape ; sh:closed true ; sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 10 ; sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; @@ -19602,65 +19609,32 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Protein . biolink:ProteinDomain a sh:NodeShape ; sh:closed true ; sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; @@ -19670,6 +19644,29 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], @@ -19677,29 +19674,51 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ] ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:ProteinDomain . biolink:ProteinFamily a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 2 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -19708,34 +19727,15 @@ biolink:ProteinFamily a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -19745,126 +19745,63 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ] ; + sh:order 5 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ProteinFamily . biolink:ProteinIsoform a sh:NodeShape ; sh:closed true ; sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ] ; - sh:targetClass biolink:ProteinIsoform . - -biolink:RNAProduct a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 3 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; @@ -19872,42 +19809,82 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:RNAProduct . + sh:order 7 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:ProteinIsoform . -biolink:RNAProductIsoform a sh:NodeShape ; +biolink:RNAProduct a sh:NodeShape ; sh:closed true ; - sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:RNAProduct . + +biolink:RNAProductIsoform a sh:NodeShape ; + sh:closed true ; + sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], @@ -19915,254 +19892,243 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:RNAProductIsoform . biolink:ReactionToCatalystAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], + sh:order 2 ; + sh:path biolink:reaction_side ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:stoichiometry ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:stoichiometry ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:order 34 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the chemical element that is the target of the statement" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 30 ; sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ] ; - sh:targetClass biolink:ReactionToCatalystAssociation . - -biolink:ReactionToParticipantAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:description "a point in time" ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ] ; + sh:targetClass biolink:ReactionToCatalystAssociation . + +biolink:ReactionToParticipantAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -20173,146 +20139,183 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:stoichiometry ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 3 ; + sh:path rdf:subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:stoichiometry ], + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 2 ; + sh:path biolink:reaction_side ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ] ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:ReactionToParticipantAssociation . biolink:ReagentTargetedGene a sh:NodeShape ; sh:closed true ; sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -20321,9 +20324,42 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; @@ -20337,81 +20373,29 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:id ] ; sh:targetClass biolink:ReagentTargetedGene . biolink:RegulatoryRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -20421,23 +20405,39 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; @@ -20465,49 +20465,40 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a relative frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 2 ; + sh:path biolink:format ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -20517,20 +20508,29 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ] ; sh:targetClass biolink:RelativeFrequencyAnalysisResult . biolink:SensitivityQuantifier a sh:NodeShape ; @@ -20543,144 +20543,237 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:path biolink:iri ] ; + sh:targetClass biolink:SequenceAssociation . + +biolink:SequenceFeatureRelationship a sh:NodeShape ; + sh:closed true ; + sh:description "For example, a particular exon is part of a particular transcript or gene" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -20693,64 +20786,56 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ] ; - sh:targetClass biolink:SequenceAssociation . - -biolink:SequenceFeatureRelationship a sh:NodeShape ; - sh:closed true ; - sh:description "For example, a particular exon is part of a particular transcript or gene" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -20764,226 +20849,104 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ] ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:SequenceFeatureRelationship . biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:Treatment ; - sh:description "treatment whose efficacy is modulated by the subject variant" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:SequenceVariant ; - sh:description "variant that modulates the treatment of some disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -20991,46 +20954,84 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Treatment ; + sh:description "treatment whose efficacy is modulated by the subject variant" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:SequenceVariant ; + sh:description "variant that modulates the treatment of some disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21038,167 +21039,158 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:order 11 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . biolink:Serial a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:volume ], + [ sh:datatype xsd:string ; sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:full_name ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], + sh:order 12 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 15 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 4 ; sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 13 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 15 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:creation_date ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:iso_abbreviation ], + sh:order 14 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:issue ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 13 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:summary ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:iso_abbreviation ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 21 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:volume ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 2 ; + sh:path biolink:issue ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; sh:order 19 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:rights ] ; sh:targetClass biolink:Serial . biolink:SiRNA a sh:NodeShape ; sh:closed true ; sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21208,14 +21200,22 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:SiRNA . biolink:SmallMolecule a sh:NodeShape ; @@ -21227,55 +21227,34 @@ biolink:SmallMolecule a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 15 ; + sh:path dct:description ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21285,71 +21264,107 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 12 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], + sh:order 16 ; + sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ] ; sh:targetClass biolink:SmallMolecule . biolink:Snv a sh:NodeShape ; sh:closed true ; sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21358,33 +21373,17 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Snv . biolink:SocioeconomicExposure a sh:NodeShape ; sh:closed true ; sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], + sh:property [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -21392,25 +21391,42 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:class biolink:SocioeconomicAttribute ; + sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:SocioeconomicAttribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; @@ -21418,10 +21434,11 @@ biolink:SocioeconomicExposure a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -21429,25 +21446,8 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:order 4 ; sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 12 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; @@ -21469,7 +21469,16 @@ biolink:Study a sh:NodeShape ; sh:closed true ; sh:description "a detailed investigation and/or analysis" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -21478,15 +21487,10 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; @@ -21495,21 +21499,9 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -21517,24 +21509,55 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Study . biolink:StudyPopulation a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group as participants in a research study." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; @@ -21544,70 +21567,33 @@ biolink:StudyPopulation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:StudyPopulation . biolink:StudyResult a sh:NodeShape ; sh:closed false ; sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21617,10 +21603,38 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], @@ -21631,26 +21645,12 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ] ; @@ -21660,63 +21660,50 @@ biolink:StudyVariable a sh:NodeShape ; sh:closed true ; sh:description "a variable that is used as a measure in the investigation of a study" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -21725,7 +21712,20 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:StudyVariable . biolink:SubjectOfInvestigation a sh:NodeShape ; @@ -21737,40 +21737,30 @@ biolink:SubjectOfInvestigation a sh:NodeShape ; biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "An association between individuals of different taxa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -21779,57 +21769,49 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; @@ -21838,68 +21820,86 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "An association between individuals of different taxa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:TaxonToTaxonAssociation . biolink:TaxonomicRank a sh:NodeShape ; @@ -21918,36 +21918,7 @@ biolink:TextMiningResult a sh:NodeShape ; sh:closed true ; sh:description "A result of text mining." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -21957,29 +21928,58 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; @@ -21990,455 +21990,341 @@ biolink:ThingWithTaxon a sh:NodeShape ; sh:closed false ; sh:description "A mixin that can be used on any entity that can be taxonomically classified. This includes individual organisms; genes, their products and other molecular entities; body parts; biological processes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ThingWithTaxon . biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:TranscriptToGeneRelationship . - -biolink:TranscriptionFactorBindingSite a sh:NodeShape ; - sh:closed true ; - sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 30 ; sh:path rdfs:label ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 31 ; sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 27 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:TranscriptionFactorBindingSite . - -biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:Transcript ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ] ; + sh:targetClass biolink:TranscriptToGeneRelationship . + +biolink:TranscriptionFactorBindingSite a sh:NodeShape ; + sh:closed true ; + sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 1 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:TranscriptionFactorBindingSite . + +biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:SequenceVariant ; - sh:description "A variant that has a role in modeling the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:class biolink:SeverityValue ; sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:severity_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . - -biolink:VariantToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -22446,102 +22332,104 @@ This field is multi-valued. It should include values for ancestors of the biolin In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "E.g. is pathogenic for" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + sh:description "A variant that has a role in modeling the disease." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:onset_qualifier ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 35 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; + sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . + +biolink:VariantToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; @@ -22551,13 +22439,33 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:Disease ; sh:description "a disease that is associated with that variant" ; sh:maxCount 1 ; @@ -22565,45 +22473,137 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 33 ; + sh:path biolink:severity_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ] ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:onset_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:VariantToDiseaseAssociation . biolink:VariantToEntityAssociationMixin a sh:NodeShape ; @@ -22615,74 +22615,98 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:SequenceVariant ; sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; @@ -22690,94 +22714,70 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:Gene ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; + sh:path rdf:object ] ; sh:targetClass biolink:VariantToGeneAssociation . biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; @@ -22785,117 +22785,116 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 19 ; + sh:path biolink:subject_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 33 ; sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], + sh:order 2 ; + sh:path biolink:stage_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 26 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:qualifiers ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], + sh:order 16 ; + sh:path biolink:original_subject ], [ sh:class biolink:Gene ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -22903,137 +22902,195 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:object ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:expression_site ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 28 ; - sh:path biolink:object_label_closure ] ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:publications ] ; sh:targetClass biolink:VariantToGeneExpressionAssociation . biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:SeverityValue ; + sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:severity_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:has_count ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:onset_qualifier ], + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_total ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_percentage ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_total ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -23041,207 +23098,238 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_quotient ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 39 ; + sh:path biolink:onset_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_quotient ], + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . + +biolink:VariantToPopulationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; + sh:order 24 ; sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:SequenceVariant ; + sh:description "an allele that has a certain frequency in a given population" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 5 ; + sh:path rdf:subject ], + [ sh:datatype xsd:integer ; + sh:description "number all populations that carry a particular allele, aka allele number" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 1 ; + sh:path biolink:has_total ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that is observed to have the frequency" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 7 ; - sh:path biolink:publications ], + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 8 ; sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path rdf:predicate ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 35 ; sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:severity_qualifier ] ; - sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . - -biolink:VariantToPopulationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; + sh:order 32 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], + sh:order 36 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], + sh:order 3 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:SequenceVariant ; - sh:description "an allele that has a certain frequency in a given population" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:integer ; + sh:description "number in object population that carry a particular allele, aka allele count" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:order 0 ; + sh:path biolink:has_count ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -23249,9 +23337,9 @@ biolink:VariantToPopulationAssociation a sh:NodeShape ; sh:order 20 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; @@ -23262,41 +23350,10 @@ biolink:VariantToPopulationAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 26 ; sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:order 2 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -23307,111 +23364,21 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 22 ; sh:path biolink:subject_closure ], - [ sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_percentage ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:integer ; - sh:description "number in object population that carry a particular allele, aka allele count" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_count ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that is observed to have the frequency" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "number all populations that carry a particular allele, aka allele number" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_total ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ] ; + sh:order 19 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:VariantToPopulationAssociation . biolink:Vertebrate a sh:NodeShape ; sh:closed true ; sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; @@ -23419,71 +23386,64 @@ biolink:Vertebrate a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; - sh:targetClass biolink:Vertebrate . - -biolink:Virus a sh:NodeShape ; - sh:closed true ; - sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ] ; + sh:targetClass biolink:Vertebrate . + +biolink:Virus a sh:NodeShape ; + sh:closed true ; + sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23493,10 +23453,50 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Virus . biolink:WebPage a sh:NodeShape ; @@ -23508,23 +23508,6 @@ biolink:WebPage a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], @@ -23532,12 +23515,29 @@ biolink:WebPage a sh:NodeShape ; sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:format ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23547,6 +23547,15 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; @@ -23555,80 +23564,52 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 1 ; sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 10 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ] ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ] ; sh:targetClass biolink:WebPage . biolink:Behavior a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23638,75 +23619,78 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:Behavior . - -biolink:BehavioralFeature a sh:NodeShape ; - sh:closed true ; - sh:description "A phenotypic feature which is behavioral in nature." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; + sh:order 9 ; sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ] ; + sh:targetClass biolink:Behavior . + +biolink:BehavioralFeature a sh:NodeShape ; + sh:closed true ; + sh:description "A phenotypic feature which is behavioral in nature." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23716,76 +23700,67 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:BehavioralFeature . biolink:BiologicalProcess a sh:NodeShape ; sh:closed true ; sh:description "One or more causally connected executions of molecular functions" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23795,18 +23770,43 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; @@ -23817,50 +23817,37 @@ biolink:Case a sh:NodeShape ; sh:closed true ; sh:description "An individual (human) organism that has a patient role in some clinical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23870,91 +23857,97 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Case . biolink:CellLine a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:CellLine . biolink:CellularComponent a sh:NodeShape ; sh:closed true ; sh:description "A location in or around a cell" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -23964,57 +23957,77 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:path biolink:id ] ; sh:targetClass biolink:CellularComponent . biolink:ClinicalAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a clinical manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -24024,21 +24037,22 @@ biolink:ClinicalAttribute a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24048,87 +24062,75 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + sh:path biolink:id ] ; sh:targetClass biolink:ClinicalAttribute . biolink:Dataset a sh:NodeShape ; sh:closed true ; sh:description "an item that refers to a collection of data from a data source." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24138,15 +24140,13 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ] ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Dataset . biolink:DatasetDistribution a sh:NodeShape ; @@ -24154,39 +24154,22 @@ biolink:DatasetDistribution a sh:NodeShape ; sh:description "an item that holds distribution level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:distribution_download_url ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:format ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24196,67 +24179,60 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:license ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:DatasetDistribution . - -biolink:Device a sh:NodeShape ; - sh:closed true ; - sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 13 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 0 ; + sh:path biolink:distribution_download_url ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 9 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:DatasetDistribution . + +biolink:Device a sh:NodeShape ; + sh:closed true ; + sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24266,93 +24242,142 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ] ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Device . biolink:Exon a sh:NodeShape ; sh:closed true ; sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Exon . biolink:GeneFamily a sh:NodeShape ; sh:closed true ; sh:description "any grouping of multiple genes or gene products related by common descent" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; @@ -24361,244 +24386,190 @@ biolink:GeneFamily a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; sh:targetClass biolink:GeneFamily . biolink:GeneProductMixin a sh:NodeShape ; sh:closed false ; sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:GeneProductMixin . biolink:GeneticInheritance a sh:NodeShape ; sh:closed true ; sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:GeneticInheritance . biolink:InformationContentEntity a sh:NodeShape ; sh:closed false ; sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; - sh:targetClass biolink:InformationContentEntity . - -biolink:OrganismalEntity a sh:NodeShape ; - sh:closed false ; - sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:order 9 ; - sh:path rdf:type ], + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:in_taxon ], + sh:path biolink:license ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; + sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:order 1 ; + sh:path biolink:rights ] ; + sh:targetClass biolink:InformationContentEntity . + +biolink:OrganismalEntity a sh:NodeShape ; + sh:closed false ; + sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -24612,21 +24583,50 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:OrganismalEntity . biolink:Outcome a sh:NodeShape ; @@ -24639,100 +24639,100 @@ biolink:PredicateMapping a sh:NodeShape ; sh:closed true ; sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], + sh:order 0 ; + sh:path biolink:mapped_predicate ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_derivative_qualifier ], + sh:order 14 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:order 4 ; + sh:path biolink:subject_part_qualifier ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:causal_mechanism_qualifier ], + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:object_form_or_variant_qualifier ], [ sh:class biolink:OrganismTaxon ; sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:species_context_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:exact_match ], [ sh:datatype xsd:string ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_part_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 16 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualified_predicate ], + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:broad_match ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:narrow_match ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:object_part_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_context_qualifier ], + sh:order 5 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:object_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; + sh:order 8 ; + sh:path biolink:qualified_predicate ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:mapped_predicate ], + sh:order 15 ; + sh:path biolink:causal_mechanism_qualifier ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_form_or_variant_qualifier ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:exact_match ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:object_context_qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], + sh:order 13 ; + sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:narrow_match ] ; + sh:order 12 ; + sh:path biolink:object_part_qualifier ] ; sh:targetClass biolink:PredicateMapping . biolink:Procedure a sh:NodeShape ; @@ -24743,13 +24743,6 @@ biolink:Procedure a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -24760,6 +24753,21 @@ biolink:Procedure a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; @@ -24768,12 +24776,6 @@ biolink:Procedure a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24783,134 +24785,142 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Procedure . biolink:SocioeconomicAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a socioeconomic manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:SocioeconomicAttribute . biolink:Treatment a sh:NodeShape ; sh:closed true ; sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Procedure ; - sh:description "connects an entity to one or more (medical) procedures" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_procedure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:class biolink:Device ; - sh:description "connects an entity to one or more (medical) devices" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_device ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:class biolink:Drug ; + sh:description "connects an entity to one or more drugs" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_drug ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:class biolink:Device ; + sh:description "connects an entity to one or more (medical) devices" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_device ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -24920,146 +24930,123 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Drug ; - sh:description "connects an entity to one or more drugs" ; + [ sh:class biolink:Procedure ; + sh:description "connects an entity to one or more (medical) procedures" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_drug ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:order 2 ; + sh:path biolink:has_procedure ] ; sh:targetClass biolink:Treatment . biolink:Zygosity a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ] ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:Zygosity . biolink:Drug a sh:NodeShape ; sh:closed true ; sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalMixture ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:is_supplement ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], + sh:order 9 ; + sh:path biolink:has_chemical_role ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 4 ; + sh:path biolink:routes_of_delivery ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ], + sh:order 3 ; + sh:path biolink:drug_regulatory_status_world_wide ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; @@ -25067,69 +25054,99 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 5 ; sh:path biolink:trade_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:is_supplement ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:is_toxic ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 11 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 4 ; - sh:path biolink:routes_of_delivery ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ] ; + sh:path biolink:iri ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Drug . biolink:ExposureEvent a sh:NodeShape ; sh:closed false ; sh:description "A (possibly time bounded) incidence of a feature of the environment of an organism that influences one or more phenotypic features of that organism, potentially mediated by genes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:ExposureEvent . biolink:IndividualOrganism a sh:NodeShape ; sh:closed true ; sh:description "An instance of an organism. For example, Richard Nixon, Charles Darwin, my pet cat. Example ID: ORCID:0000-0002-5355-2576" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -25138,88 +25155,74 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:IndividualOrganism . biolink:MaterialSample a sh:NodeShape ; sh:closed true ; sh:description "A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25229,54 +25232,23 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; sh:targetClass biolink:MaterialSample . biolink:Transcript a sh:NodeShape ; sh:closed true ; sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -25285,61 +25257,64 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Transcript . biolink:Pathway a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25349,75 +25324,101 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ] ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Pathway . biolink:LifeStage a sh:NodeShape ; sh:closed true ; sh:description "A stage of development or growth of an organism, including post-natal adult stages" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25427,75 +25428,74 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:LifeStage . biolink:NucleicAcidEntity a sh:NodeShape ; sh:closed true ; sh:description "A nucleic acid entity is a molecular entity characterized by availability in gene databases of nucleotide-based sequence representations of its precise sequence; for convenience of representation, partial sequences of various kinds are included." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:property [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:is_toxic ], + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:max_tolerated_dose ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; @@ -25505,80 +25505,72 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:is_metabolite ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_metabolite ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 11 ; - sh:path biolink:xref ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:is_toxic ] ; sh:targetClass biolink:NucleicAcidEntity . biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; sh:closed true ; sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25588,14 +25580,18 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -25606,10 +25602,14 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:PopulationOfIndividualOrganisms . biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; @@ -25622,9 +25622,17 @@ biolink:MolecularActivity a sh:NodeShape ; sh:closed true ; sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25634,33 +25642,42 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "The gene product, gene, or complex that catalyzes the reaction" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the input for the reaction" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:MolecularEntity ; sh:description "A chemical entity that is the output for the reaction" ; sh:nodeKind sh:IRI ; @@ -25671,52 +25688,59 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path rdfs:label ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the input for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "The gene product, gene, or complex that catalyzes the reaction" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ] ; + sh:order 12 ; + sh:path rdf:type ] ; sh:targetClass biolink:MolecularActivity . biolink:ChemicalMixture a sh:NodeShape ; sh:closed true ; sh:description "A chemical mixture is a chemical entity composed of two or more molecular entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25726,10 +25750,18 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; sh:path biolink:available_from ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:class biolink:ChemicalMixture ; sh:description "" ; sh:maxCount 1 ; @@ -25737,64 +25769,32 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 0 ; sh:path biolink:is_supplement ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + sh:order 16 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; sh:path biolink:xref ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 18 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 9 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'FDA approval status.'" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ] ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ] ; sh:targetClass biolink:ChemicalMixture . biolink:MacromolecularMachineMixin a sh:NodeShape ; @@ -25811,80 +25811,80 @@ biolink:MolecularEntity a sh:NodeShape ; sh:closed true ; sh:description "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 15 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ], [ sh:datatype xsd:boolean ; sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; @@ -25896,24 +25896,22 @@ biolink:PhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "A combination of entity and quality that makes up a phenotyping statement. An observable characteristic of an individual resulting from the interaction of its genotype with its molecular and physical environment." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -25923,55 +25921,70 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:PhenotypicFeature . biolink:PhysicalEntity a sh:NodeShape ; sh:closed true ; sh:description "An entity that has material reality (a.k.a. physical essence)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; @@ -25985,75 +25998,39 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:PhysicalEntity . biolink:Genotype a sh:NodeShape ; sh:closed true ; sh:description "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Zygosity ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Zygosity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_zygosity ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26063,51 +26040,40 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:Genotype . - -biolink:SequenceVariant a sh:NodeShape ; - sh:closed true ; - sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -26115,7 +26081,17 @@ biolink:SequenceVariant a sh:NodeShape ; sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:order 11 ; - sh:path rdf:type ], + sh:path rdf:type ] ; + sh:targetClass biolink:Genotype . + +biolink:SequenceVariant a sh:NodeShape ; + sh:closed true ; + sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26125,75 +26101,97 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:has_biological_sequence ] ; + sh:path biolink:has_biological_sequence ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:SequenceVariant . biolink:Agent a sh:NodeShape ; sh:closed true ; sh:description "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "it is recommended that an author's 'name' property be formatted as \"surname, firstname initial.\"" ; + sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; - sh:order 0 ; - sh:path biolink:affiliation ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:address ], + [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; + sh:order 0 ; + sh:path biolink:affiliation ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; sh:maxCount 1 ; @@ -26204,32 +26202,46 @@ biolink:Agent a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + [ sh:description "it is recommended that an author's 'name' property be formatted as \"surname, firstname initial.\"" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:address ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Agent . biolink:ChemicalRole a sh:NodeShape ; sh:closed true ; sh:description " A role played by the molecular entity or part thereof within a chemical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; @@ -26238,32 +26250,13 @@ biolink:ChemicalRole a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26279,48 +26272,41 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ] ; sh:targetClass biolink:ChemicalRole . biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26330,42 +26316,64 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeature . biolink:Disease a sh:NodeShape ; sh:closed true ; sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26375,56 +26383,54 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:path dct:description ] ; sh:targetClass biolink:Disease . biolink:BiologicalSex a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... @@ -26433,47 +26439,40 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -26481,116 +26480,102 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:BiologicalSex . biolink:Gene a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Symbol for a particular thing" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:symbol ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:has_biological_sequence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Symbol for a particular thing" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:symbol ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path rdfs:label ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ] ; + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ] ; sh:targetClass biolink:Gene . biolink:AnatomicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A subcellular location, cell type or gross anatomical part" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26600,34 +26585,49 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:AnatomicalEntity . biolink:ChemicalEntity a sh:NodeShape ; @@ -26643,46 +26643,60 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; sh:path rdfs:label ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; @@ -26690,20 +26704,6 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 1 ; @@ -26714,25 +26714,32 @@ biolink:Onset a sh:NodeShape ; sh:closed true ; sh:description "The age group in which (disease) symptom manifestations appear" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -26740,27 +26747,59 @@ biolink:Onset a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:Onset . + +biolink:SeverityValue a sh:NodeShape ; + sh:closed true ; + sh:description "describes the severity of a phenotypic feature or disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26775,85 +26814,46 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; - sh:targetClass biolink:Onset . - -biolink:SeverityValue a sh:NodeShape ; - sh:closed true ; - sh:description "describes the severity of a phenotypic feature or disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:SeverityValue . biolink:GeneOrGeneProduct a sh:NodeShape ; @@ -26887,6 +26887,23 @@ biolink:NamedThing a sh:NodeShape ; sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -26899,40 +26916,23 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:path dct:description ] ; sh:targetClass biolink:NamedThing . biolink:OrganismTaxon a sh:NodeShape ; @@ -26948,26 +26948,10 @@ biolink:OrganismTaxon a sh:NodeShape ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -26976,32 +26960,51 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:OrganismTaxon . biolink:EvidenceType a sh:NodeShape ; sh:closed true ; sh:description "Class of evidence that supports an association" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; @@ -27010,47 +27013,44 @@ biolink:EvidenceType a sh:NodeShape ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -27066,138 +27066,105 @@ biolink:Publication a sh:NodeShape ; sh:closed true ; sh:description "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP). " ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], + sh:order 6 ; + sh:path biolink:license ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], + sh:order 8 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ] ; + sh:order 14 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Publication . biolink:RetrievalSource a sh:NodeShape ; sh:closed true ; sh:description "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path dct:description ], - [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:resource_id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path rdfs:label ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:upstream_resource_ids ], - [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:resource_role ], [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. * In a neo4j database this MAY correspond to the neo4j label tag. * In an RDF database it should be a biolink model class URI. @@ -27207,93 +27174,93 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:order 13 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:resource_role ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 8 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:creation_date ], + sh:order 12 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:license ], + [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:resource_id ], + [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:upstream_resource_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 8 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 6 ; - sh:path biolink:format ] ; + sh:path biolink:format ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:creation_date ] ; sh:targetClass biolink:RetrievalSource . biolink:Attribute a sh:NodeShape ; sh:closed true ; sh:description "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. - * In a neo4j database this MAY correspond to the neo4j label tag. - * In an RDF database it should be a biolink model class URI. -This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... -In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -27304,15 +27271,48 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description """Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. + * In a neo4j database this MAY correspond to the neo4j label tag. + * In an RDF database it should be a biolink model class URI. +This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`, ... +In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}""" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Attribute . biolink:OntologyClass a sh:NodeShape ; diff --git a/biolink-model.ttl b/biolink-model.ttl index 2d9130b9bd..bd4ecac07f 100644 --- a/biolink-model.ttl +++ b/biolink-model.ttl @@ -350,268 +350,268 @@ , , ; - linkml:generation_date "2023-10-26T15:38:28"^^xsd:dateTime ; + linkml:generation_date "2023-10-26T17:26:13"^^xsd:dateTime ; linkml:id ; linkml:imports linkml:types ; linkml:metamodel_version "1.7.0" ; - linkml:prefixes [ linkml:prefix_prefix "DOID-PROPERTY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "GTOPDB" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "OBAN" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "VANDF" ; - linkml:prefix_reference ], + linkml:prefixes [ linkml:prefix_prefix "KEGG.PATHWAY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "GTEx" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "fabio" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "Xenbase" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "mirbase" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "ChemBank" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "linkml" ; linkml:prefix_reference linkml: ], - [ linkml:prefix_prefix "gff3" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "WBbt" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "HsapDv" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "RXNORM" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "DGIdb" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "PHARMGKB.GENE" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ECTO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "NBO-PROPERTY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "UBERON_CORE" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "bioschemas" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ORCID" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "HANCESTRO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "MmusDv" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "gpi" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "doi" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "PMC" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "CHEMBL.MECHANISM" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "SIO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "dcid" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ComplexPortal" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "GTOPDB" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "NLMID" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "WBbt" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UMLSSG" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "AGRKB" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "CTD.GENE" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "EDAM-TOPIC" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PHAROS" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "GOREL" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "RO" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "KEGG.GENES" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "medgen" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "dct" ; - linkml:prefix_reference dcterms: ], + [ linkml:prefix_prefix "UBERGRAPH" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "metacyc.reaction" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "dcid" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "ncats.bioplanet" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "foodb.food" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "isbn" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "RXCUI" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "OMIM.PS" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "LOINC" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "ICD10" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "FYECO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "EDAM-TOPIC" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "foaf" ; - linkml:prefix_reference foaf: ], + [ linkml:prefix_prefix "KEGG.BRITE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "issn" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PathWhiz" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "SIO" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "SPDI" ; linkml:prefix_reference ], + [ linkml:prefix_prefix "ncats.drug" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "KEGG.RCLASS" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ECTO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ComplexPortal" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "WBls" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "HsapDv" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "RXCUI" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "DGIdb" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "OBAN" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "RXNORM" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "EDAM-DATA" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "XPO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "MAXO" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "CID" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "PHARMGKB.DISEASE" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "HCPCS" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "fabio" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "os" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "prov" ; - linkml:prefix_reference prov: ], [ linkml:prefix_prefix "pav" ; linkml:prefix_reference pav: ], - [ linkml:prefix_prefix "PomBase" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "orphanet" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "SNOMEDCT" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "MSigDB" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ncats.drug" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "MI" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "biolink" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "metacyc.reaction" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CPT" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "wgs" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "RO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "FYPO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "LOINC" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "SEED.REACTION" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "OMIM.PS" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "GOREL" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "NLMID" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "PHARMGKB.VARIANT" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "MESH" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "PANTHER.FAMILY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "REPODB" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "EDAM-FORMAT" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CHADO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "foodb.compound" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CLINVAR" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "COAR_RESOURCE" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "isni" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "dct" ; + linkml:prefix_reference dcterms: ], + [ linkml:prefix_prefix "schema" ; + linkml:prefix_reference schema1: ], [ linkml:prefix_prefix "NCBIGene" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "UBERGRAPH" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "XPO" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "WIKIDATA" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "isbn" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "VMC" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CHEMBL.MECHANISM" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "REPODB" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "MESH" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "NCIT-OBO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CTD.GENE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "METANETX.REACTION" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "AspGD" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "gff3" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CPT" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CLINVAR" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "gpi" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "COG" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "EDAM-DATA" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ScopusID" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "PHARMGKB.CHEMICAL" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "KEGG" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CTD.DISEASE" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "INO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CTD" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "KEGG.RCLASS" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "GTEx" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "MAXO" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "PHARMGKB.DISEASE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UBERON_CORE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "prov" ; + linkml:prefix_reference prov: ], + [ linkml:prefix_prefix "HCPCS" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CAID" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "SNOMEDCT" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CTD.CHEMICAL" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "qud" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "UMLSSG" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "UNIPROT.ISOFORM" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "ExO" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "NCIT-OBO" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "interpro" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "EDAM-OPERATION" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "foodb.compound" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "DOID-PROPERTY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PHARMGKB.GENE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "foaf" ; + linkml:prefix_reference foaf: ], + [ linkml:prefix_prefix "MSigDB" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "biolink" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "foodb.food" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "SEMMEDDB" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "NDDF" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "UO-PROPERTY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "Xenbase" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "schema" ; - linkml:prefix_reference schema1: ], [ linkml:prefix_prefix "PHARMGKB.PATHWAYS" ; linkml:prefix_reference ], + [ linkml:prefix_prefix "CHADO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "orphanet" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "STY" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "ICD9" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "mmmp.biomaps" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "WBVocab" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "PHAROS" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "KEGG.PATHWAY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "AspGD" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "WIKIDATA" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "VMC" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "WBls" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "CAID" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "DrugCentral" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "WIKIDATA_PROPERTY" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "UniProtKB" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "dcat" ; - linkml:prefix_reference dcat: ], - [ linkml:prefix_prefix "PathWhiz" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "gtpo" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "CTD.CHEMICAL" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "METANETX.REACTION" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "apollo" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "KEGG.BRITE" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "KEGG" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ExO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "EDAM-FORMAT" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PHARMGKB.VARIANT" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "os" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "isni" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "WIKIDATA_PROPERTY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PomBase" ; + linkml:prefix_reference ], [ linkml:prefix_prefix "EFO" ; linkml:prefix_reference ], [ linkml:prefix_prefix "ResearchID" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "interpro" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "STY" ; - linkml:prefix_reference ], + [ linkml:prefix_prefix "VANDF" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ORCID" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UBERON_NONAMESPACE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CTD" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "PHARMGKB.CHEMICAL" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "NDDF" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "medgen" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "NBO-PROPERTY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ChemBank" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "SEED.REACTION" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "INO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UNIPROT.ISOFORM" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "mmmp.biomaps" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "dcat" ; + linkml:prefix_reference dcat: ], [ linkml:prefix_prefix "GSID" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "EDAM-OPERATION" ; - linkml:prefix_reference ], [ linkml:prefix_prefix "GOP" ; linkml:prefix_reference ], - [ linkml:prefix_prefix "UBERON_NONAMESPACE" ; - linkml:prefix_reference ], - [ linkml:prefix_prefix "issn" ; - linkml:prefix_reference ] ; + [ linkml:prefix_prefix "PANTHER.FAMILY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "HANCESTRO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "FYECO" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UniProtKB" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "DrugCentral" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "MI" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "wgs" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "CTD.DISEASE" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "UO-PROPERTY" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "MmusDv" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "doi" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "bioschemas" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "ScopusID" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "apollo" ; + linkml:prefix_reference ], + [ linkml:prefix_prefix "FYPO" ; + linkml:prefix_reference ] ; linkml:slots , , , @@ -1333,7 +1333,7 @@ , ; linkml:source_file "biolink-model.yaml" ; - linkml:source_file_date "2023-10-26T15:36:37"^^xsd:dateTime ; + linkml:source_file_date "2023-10-26T17:24:26"^^xsd:dateTime ; linkml:source_file_size 362084 ; linkml:subsets , , @@ -2153,9 +2153,9 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:example "cerebral cortext" ], + skos:example "blood" ], [ a linkml:Example ; - skos:example "blood" ] ; + skos:example "cerebral cortext" ] ; linkml:is_a ; linkml:is_usage_slot true ; linkml:owner ; @@ -2321,9 +2321,9 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:example "human" ], + skos:example "zebrafish" ], [ a linkml:Example ; - skos:example "zebrafish" ] ; + skos:example "human" ] ; linkml:is_a ; linkml:is_usage_slot true ; linkml:owner ; @@ -3237,11 +3237,11 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:definition "abnormal brain ventricle size" ; - skos:example "MP:0013229" ], - [ a linkml:Example ; skos:definition "Ehlers-Danlos syndrome, vascular type" ; - skos:example "MONDO:0017314" ] ; + skos:example "MONDO:0017314" ], + [ a linkml:Example ; + skos:definition "abnormal brain ventricle size" ; + skos:example "MP:0013229" ] ; linkml:is_a ; linkml:is_usage_slot true ; linkml:local_names [ linkml:ga4gh [ skos:altLabel "annotation subject" ; @@ -3619,11 +3619,11 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:definition "abnormal circulating bilirubin level" ; - skos:example "MP:0001569" ], - [ a linkml:Example ; skos:definition "axon morphology variant" ; skos:example "WBPhenotype:0000180" ], + [ a linkml:Example ; + skos:definition "abnormal circulating bilirubin level" ; + skos:example "MP:0001569" ], [ a linkml:Example ; skos:definition "Hyperkinesis" ; skos:example "HP:0002487" ] ; @@ -6521,11 +6521,11 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:definition "CLINVAR representation of NM_000059.3(BRCA2):c.7007G>A (p.Arg2336His)" ; - skos:example "CLINVAR:38077" ], - [ a linkml:Example ; skos:definition "chr13:g.32921033G>C (hg19) in ClinGen" ; - skos:example "ClinGen:CA024716" ] ; + skos:example "ClinGen:CA024716" ], + [ a linkml:Example ; + skos:definition "CLINVAR representation of NM_000059.3(BRCA2):c.7007G>A (p.Arg2336His)" ; + skos:example "CLINVAR:38077" ] ; linkml:is_a ; linkml:is_usage_slot true ; linkml:local_names [ linkml:ga4gh [ skos:altLabel "annotation subject" ; @@ -9167,11 +9167,11 @@ linkml:domain ; linkml:domain_of ; linkml:examples [ a linkml:Example ; - skos:definition "ti282a allele from ZFIN" ; - skos:example "ZFIN:ZDB-ALT-980203-1091" ], - [ a linkml:Example ; skos:definition "NM_007294.3(BRCA1):c.2521C>T (p.Arg841Trp)" ; - skos:example "CLINVAR:17681" ] ; + skos:example "CLINVAR:17681" ], + [ a linkml:Example ; + skos:definition "ti282a allele from ZFIN" ; + skos:example "ZFIN:ZDB-ALT-980203-1091" ] ; linkml:identifier true ; linkml:is_a ; linkml:is_usage_slot true ; @@ -11049,11 +11049,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example true ; - linkml:tag ], - [ a linkml:Annotation ; skos:example "positively correlated with" ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example true ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -12459,11 +12459,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example "treats" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "treats" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -12919,11 +12919,11 @@ skos:inScheme ; skos:narrowMatch ; linkml:annotations [ a linkml:Annotation ; - skos:example "has increased amount" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "has increased amount" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -13135,11 +13135,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example "has completed" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "has completed" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -13360,11 +13360,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example "decreases response to" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "decreases response to" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -13975,11 +13975,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example true ; - linkml:tag ], - [ a linkml:Annotation ; skos:example "prevents" ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example true ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -14013,11 +14013,11 @@ skos:inScheme ; skos:narrowMatch ; linkml:annotations [ a linkml:Annotation ; - skos:example "predisposes" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "predisposes" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -15763,11 +15763,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example true ; - linkml:tag ], - [ a linkml:Annotation ; skos:example "exacerbates" ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example true ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -15786,13 +15786,13 @@ linkml:definition_uri ; linkml:domain ; linkml:examples [ a linkml:Example ; - skos:example "abundance" ], - [ a linkml:Example ; skos:example "stability" ], [ a linkml:Example ; - skos:example "exposure" ], + skos:example "abundance" ], + [ a linkml:Example ; + skos:example "expression" ], [ a linkml:Example ; - skos:example "expression" ] ; + skos:example "exposure" ] ; linkml:is_a ; linkml:owner ; linkml:range ; @@ -15871,9 +15871,9 @@ linkml:definition_uri ; linkml:domain ; linkml:examples [ a linkml:Example ; - skos:example "cohort x (e.g. a specific population, referenced by an identifier)" ], + skos:example "gut microbiome" ], [ a linkml:Example ; - skos:example "gut microbiome" ] ; + skos:example "cohort x (e.g. a specific population, referenced by an identifier)" ] ; linkml:is_a ; linkml:owner ; linkml:range ; @@ -16000,15 +16000,15 @@ linkml:definition_uri ; linkml:domain ; linkml:examples [ a linkml:Example ; - skos:example "severe" ], + skos:example "transplant" ], [ a linkml:Example ; - skos:example "chemical analog" ], - [ a linkml:Example ; - skos:example "late stage" ], + skos:example "severe" ], [ a linkml:Example ; skos:example "mutation" ], [ a linkml:Example ; - skos:example "transplant" ] ; + skos:example "chemical analog" ], + [ a linkml:Example ; + skos:example "late stage" ] ; linkml:is_a ; linkml:owner ; linkml:range ; @@ -17154,11 +17154,11 @@ , ; linkml:annotations [ a linkml:Annotation ; - skos:example "prevents" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "prevents" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -17294,11 +17294,11 @@ skos:exactMatch ; skos:inScheme ; linkml:annotations [ a linkml:Annotation ; - skos:example "Co-occurrence of a certain allele of a genetic marker and the phenotype of interest in the same individuals at above-chance level" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "Co-occurrence of a certain allele of a genetic marker and the phenotype of interest in the same individuals at above-chance level" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:inherited true ; @@ -21359,11 +21359,11 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t , ; linkml:annotations [ a linkml:Annotation ; - skos:example "has input" ; - linkml:tag ], - [ a linkml:Annotation ; skos:example true ; - linkml:tag ] ; + linkml:tag ], + [ a linkml:Annotation ; + skos:example "has input" ; + linkml:tag ] ; linkml:definition_uri ; linkml:domain ; linkml:domain_of ; @@ -23499,11 +23499,11 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t skos:inScheme ; skos:note "This class is for modeling the specific state at a locus. A single DBSNP rs ID could correspond to more than one sequence variants (e.g CIViC:1252 and CIViC:1253, two distinct BRCA2 alleles for rs28897743)" ; linkml:alt_descriptions [ a linkml:AltDescription ; - skos:definition "An entity that describes a single affected, endogenous allele. These can be of any type that matches that definition" ; - linkml:source "AGR" ], - [ a linkml:AltDescription ; skos:definition "A contiguous change at a Location" ; - linkml:source "VMC" ] ; + linkml:source "VMC" ], + [ a linkml:AltDescription ; + skos:definition "An entity that describes a single affected, endogenous allele. These can be of any type that matches that definition" ; + linkml:source "AGR" ] ; linkml:class_uri ; linkml:definition_uri ; linkml:id_prefixes "AGRKB", @@ -24330,11 +24330,11 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t ; linkml:is_a ; linkml:local_names [ a linkml:LocalName ; - skos:altLabel "annotation predicate" ; - linkml:local_name_source "ga4gh" ], - [ a linkml:LocalName ; skos:altLabel "predicate" ; - linkml:local_name_source "translator" ] ; + linkml:local_name_source "translator" ], + [ a linkml:LocalName ; + skos:altLabel "annotation predicate" ; + linkml:local_name_source "ga4gh" ] ; linkml:owner ; linkml:range ; linkml:required true ; @@ -24504,11 +24504,11 @@ In an RDF database, nodes will typically have an rdf:type triples. This can be t linkml:domain_of ; linkml:is_a ; linkml:local_names [ a linkml:LocalName ; - skos:altLabel "node with outgoing relationship" ; - linkml:local_name_source "neo4j" ], - [ a linkml:LocalName ; skos:altLabel "annotation subject" ; - linkml:local_name_source "ga4gh" ] ; + linkml:local_name_source "ga4gh" ], + [ a linkml:LocalName ; + skos:altLabel "node with outgoing relationship" ; + linkml:local_name_source "neo4j" ] ; linkml:owner ; linkml:range ; linkml:required true ; diff --git a/biolink/model.py b/biolink/model.py index 1e0c7229d3..5f08f66f20 100644 --- a/biolink/model.py +++ b/biolink/model.py @@ -1,5 +1,5 @@ # Auto generated from biolink-model.yaml by pythongen.py version: 0.0.1 -# Generation date: 2023-10-26T15:38:42 +# Generation date: 2023-10-26T17:26:29 # Schema: Biolink-Model # # id: https://w3id.org/biolink/biolink-model diff --git a/context.jsonld b/context.jsonld index bc6e7618f7..c8120eefc1 100644 --- a/context.jsonld +++ b/context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2023-10-26T15:37:51", + "generation_date": "2023-10-26T17:25:29", "source": "biolink-model.yaml" }, "@context": { diff --git a/contextn.jsonld b/contextn.jsonld index b9cc7a46e8..44385eefa2 100644 --- a/contextn.jsonld +++ b/contextn.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2023-10-26T15:37:56", + "generation_date": "2023-10-26T17:25:35", "source": "biolink-model.yaml" }, "@context": {