-
Notifications
You must be signed in to change notification settings - Fork 36
/
crypto_test.go
358 lines (296 loc) · 13.5 KB
/
crypto_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
package mint
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha256"
"encoding/asn1"
"encoding/hex"
"io"
"math/big"
"testing"
)
var (
ecGroups = []NamedGroup{P256, P384, P521}
nonECGroups = []NamedGroup{FFDHE2048, FFDHE3072, FFDHE4096, FFDHE6144, FFDHE8192, X25519}
dhGroups = append(ecGroups, nonECGroups...)
shortKeyPubHex = "04e9f6076620ddf6a24e4398162057eccd3077892f046b412" +
"0ffcb9fa31cdfd385c8727b222f9a6091e442e48f32ba145" +
"bd3d68c0631b0ed8faf298c40c404bf59"
shortKeyPrivHex = "6f28e305a0975ead3b95c228082adcae852fca6af0c9385f670531657966cd6a"
// Test vectors from RFC 5869
hkdfSaltHex = "000102030405060708090a0b0c"
hkdfInputHex = "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"
hkdfInfoHex = "f0f1f2f3f4f5f6f7f8f9"
hkdfExtractOutputHex = "077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5"
hkdfExtractZeroOutputHex = "19ef24a32c717b167f33a91d6f648bdf96596776afdb6377ac434c1c293ccb04"
hkdfExpandOutputHex = "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865"
hkdfExpandLen = 42
hkdfLabel = "test"
hkdfHashHex = "f9a54250131c827542664bcad131b87c09cdd92f0d5f84db3680ee4c0c0f8ed6" // random
hkdfEncodedLabelHex = "002a" + "0a" + hex.EncodeToString([]byte("tls13 "+hkdfLabel)) + "20" + hkdfHashHex
hkdfExpandLabelOutputHex = "a7c2b665154333b14f01762409173a6941d9c4e2edbe380e1cdd3091cb56f4aff8aced829cca286be245"
)
type mockSigner struct{}
func (m mockSigner) Public() crypto.PublicKey {
return m
}
func (m mockSigner) Sign(io.Reader, []byte, crypto.SignerOpts) ([]byte, error) {
return nil, nil
}
func TestNewKeyShare(t *testing.T) {
// Test success cases
for _, group := range ecGroups {
// priv is opaque, so there's nothing we can do to test besides use
pub, priv, err := newKeyShare(group)
assertNotError(t, err, "Failed to generate new key pair")
assertNotNil(t, priv, "Private key is nil")
assertEquals(t, len(pub), keyExchangeSizeFromNamedGroup(group))
crv := curveFromNamedGroup(group)
x, y := elliptic.Unmarshal(crv, pub)
assertTrue(t, x != nil && y != nil, "Public key failed to unmarshal")
assertTrue(t, crv.Params().IsOnCurve(x, y), "Public key not on curve")
}
for _, group := range nonECGroups {
pub, priv, err := newKeyShare(group)
assertNotError(t, err, "Failed to generate new key pair")
assertNotNil(t, priv, "Private key is nil")
assertEquals(t, len(pub), keyExchangeSizeFromNamedGroup(group))
}
// Test failure case for an elliptic curve key generation failure
originalPRNG := prng
prng = bytes.NewReader(nil)
_, _, err := newKeyShare(P256)
assertError(t, err, "Generated an EC key with no entropy")
prng = originalPRNG
// Test failure case for an finite field key generation failure
originalPRNG = prng
prng = bytes.NewReader(nil)
_, _, err = newKeyShare(FFDHE2048)
assertError(t, err, "Generated a FF key with no entropy")
prng = originalPRNG
// Test failure case for an X25519 key generation failure
originalPRNG = prng
prng = bytes.NewReader(nil)
_, _, err = newKeyShare(X25519)
assertError(t, err, "Generated an X25519 key with no entropy")
prng = originalPRNG
// Test failure case for an unknown group
_, _, err = newKeyShare(NamedGroup(0))
assertError(t, err, "Generated a key for an unsupported group")
}
func TestKeyAgreement(t *testing.T) {
shortKeyPub := unhex(shortKeyPubHex)
shortKeyPriv := unhex(shortKeyPrivHex)
// Test success cases
for _, group := range dhGroups {
pubA, privA, err := newKeyShare(group)
assertNotError(t, err, "Failed to generate new key pair (A)")
pubB, privB, err := newKeyShare(group)
assertNotError(t, err, "Failed to generate new key pair (B)")
x1, err1 := keyAgreement(group, pubA, privB)
x2, err2 := keyAgreement(group, pubB, privA)
assertNotError(t, err1, "Key agreement failed (Ab)")
assertNotError(t, err2, "Key agreement failed (aB)")
assertByteEquals(t, x1, x2)
}
// Test that a short elliptic curve point is properly padded
// shortKey* have been chosen to produce a point with an X coordinate that
// has a leading zero
curveSize := len(curveFromNamedGroup(P256).Params().P.Bytes())
x, err := keyAgreement(P256, shortKeyPub, shortKeyPriv)
assertNotError(t, err, "Failed to complete short key agreement")
assertEquals(t, len(x), curveSize)
// Test failure case for a too-short public key
_, err = keyAgreement(P256, shortKeyPub[:5], shortKeyPriv)
assertError(t, err, "Performed key agreement with a truncated public key")
// Test failure for a too-short ffdh public key
_, err = keyAgreement(FFDHE2048, shortKeyPub[:5], shortKeyPriv)
assertError(t, err, "Performed key agreement with a truncated public key")
// Test failure for a too-short X25519 public key
_, err = keyAgreement(X25519, shortKeyPub[:5], shortKeyPriv)
assertError(t, err, "Performed key agreement with a truncated public key")
// Test failure case for an unknown group
_, err = keyAgreement(NamedGroup(0), shortKeyPub, shortKeyPriv)
assertError(t, err, "Performed key agreement with an unsupported group")
}
func TestNewSigningKey(t *testing.T) {
// Test RSA success
privRSA, err := newSigningKey(RSA_PKCS1_SHA256)
assertNotError(t, err, "failed to generate RSA private key")
_, ok := privRSA.(*rsa.PrivateKey)
assertTrue(t, ok, "New RSA key was not actually an RSA key")
// Test ECDSA success (P-256)
privECDSA, err := newSigningKey(ECDSA_P256_SHA256)
assertNotError(t, err, "failed to generate RSA private key")
_, ok = privECDSA.(*ecdsa.PrivateKey)
assertTrue(t, ok, "New ECDSA key was not actually an ECDSA key")
pub := privECDSA.(*ecdsa.PrivateKey).Public().(*ecdsa.PublicKey)
assertEquals(t, P256, namedGroupFromECDSAKey(pub))
// Test ECDSA success (P-384)
privECDSA, err = newSigningKey(ECDSA_P384_SHA384)
assertNotError(t, err, "failed to generate RSA private key")
_, ok = privECDSA.(*ecdsa.PrivateKey)
assertTrue(t, ok, "New ECDSA key was not actually an ECDSA key")
pub = privECDSA.(*ecdsa.PrivateKey).Public().(*ecdsa.PublicKey)
assertEquals(t, P384, namedGroupFromECDSAKey(pub))
// Test ECDSA success (P-521)
privECDSA, err = newSigningKey(ECDSA_P521_SHA512)
assertNotError(t, err, "failed to generate RSA private key")
_, ok = privECDSA.(*ecdsa.PrivateKey)
assertTrue(t, ok, "New ECDSA key was not actually an ECDSA key")
pub = privECDSA.(*ecdsa.PrivateKey).Public().(*ecdsa.PublicKey)
assertEquals(t, P521, namedGroupFromECDSAKey(pub))
// Test unsupported algorithm
_, err = newSigningKey(Ed25519)
assertError(t, err, "Created a private key for an unsupported algorithm")
}
func TestSelfSigned(t *testing.T) {
priv, err := newSigningKey(ECDSA_P256_SHA256)
assertNotError(t, err, "Failed to create private key")
// Test success
alg := ECDSA_P256_SHA256
cert, err := newSelfSigned("example.com", alg, priv)
assertNotError(t, err, "Failed to sign certificate")
assertTrue(t, len(cert.Raw) > 0, "Certificate had empty raw value")
assertEquals(t, cert.SignatureAlgorithm, x509AlgMap[alg])
// Test failure on unknown signature algorithm
alg = RSA_PSS_SHA256
_, err = newSelfSigned("example.com", alg, priv)
assertError(t, err, "Signed with an unsupported algorithm")
// Test failure on certificate signing failure (due to algorithm mismatch)
alg = RSA_PKCS1_SHA256
_, err = newSelfSigned("example.com", alg, priv)
assertError(t, err, "Signed with a mismatched algorithm")
}
func TestSignVerify(t *testing.T) {
data := []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31}
privRSA, err := newSigningKey(RSA_PSS_SHA256)
assertNotError(t, err, "failed to generate RSA private key")
privECDSA, err := newSigningKey(ECDSA_P256_SHA256)
assertNotError(t, err, "failed to generate ECDSA private key")
// Test successful signing with PKCS#1 when it is allowed
originalAllowPKCS1 := allowPKCS1
allowPKCS1 = true
sigRSA, err := sign(RSA_PKCS1_SHA256, privRSA, data)
assertNotError(t, err, "Failed to generate RSA signature")
allowPKCS1 = originalAllowPKCS1
// Test successful signing with PKCS#1 when it is not allowed
// (i.e., when it gets morphed into PSS)
originalAllowPKCS1 = allowPKCS1
allowPKCS1 = false
sigRSAPSS, err := sign(RSA_PKCS1_SHA256, privRSA, data)
assertNotError(t, err, "Failed to generate RSA-PSS signature")
allowPKCS1 = originalAllowPKCS1
// Test successful signing with PSS
originalAllowPKCS1 = allowPKCS1
allowPKCS1 = false
sigRSAPSS, err = sign(RSA_PSS_SHA256, privRSA, data)
assertNotError(t, err, "Failed to generate RSA-PSS signature")
allowPKCS1 = originalAllowPKCS1
// Test successful signing with ECDSA
sigECDSA, err := sign(ECDSA_P256_SHA256, privECDSA, data)
assertNotError(t, err, "Failed to generate ECDSA signature")
// Test signature failure on use of SHA-1
_, err = sign(RSA_PKCS1_SHA1, privRSA, data)
assertError(t, err, "Allowed a SHA-1 signature")
// Test signature failure on use of an non-RSA key with an RSA alg
_, err = sign(RSA_PKCS1_SHA1, privECDSA, data)
assertError(t, err, "Allowed an RSA signature with a non-RSA key")
// Test signature failure on use of an non-ECDSA key with an ECDSA alg
_, err = sign(ECDSA_P256_SHA256, privRSA, data)
assertError(t, err, "Allowed a ECDSA signature with a non-ECDSA key")
// Test signature failure on use of an ECDSA key from the wrong curve
_, err = sign(ECDSA_P384_SHA384, privRSA, data)
assertError(t, err, "Allowed a ECDSA signature with key from the wrong curve")
// Test signature failure on use of an unsupported key type
_, err = sign(ECDSA_P384_SHA384, mockSigner{}, data)
assertError(t, err, "Allowed a ECDSA signature with key from the wrong curve")
// Test successful verification with PKCS#1 when it is allowed
originalAllowPKCS1 = allowPKCS1
allowPKCS1 = true
err = verify(RSA_PKCS1_SHA256, privRSA.Public(), data, sigRSA)
assertNotError(t, err, "Failed to verify a valid RSA-PKCS1 signature")
allowPKCS1 = originalAllowPKCS1
// Test successful verification with PKCS#1 transformed into PSS
originalAllowPKCS1 = allowPKCS1
allowPKCS1 = false
err = verify(RSA_PKCS1_SHA256, privRSA.Public(), data, sigRSAPSS)
assertNotError(t, err, "Failed to verify a valid RSA-PSS signature")
allowPKCS1 = originalAllowPKCS1
// Test successful verification with PSS
err = verify(RSA_PSS_SHA256, privRSA.Public(), data, sigRSAPSS)
assertNotError(t, err, "Failed to verify a valid ECDSA signature")
// Test successful verification with ECDSA
err = verify(ECDSA_P256_SHA256, privECDSA.Public(), data, sigECDSA)
assertNotError(t, err, "Failed to verify a valid ECDSA signature")
// Test that SHA-1 is forbidden
err = verify(RSA_PKCS1_SHA1, privECDSA.Public(), data, sigECDSA)
assertError(t, err, "Allowed verification of a SHA-1 signature")
// Test RSA verify failure on unsupported algorithm
err = verify(ECDSA_P256_SHA256, privRSA.Public(), data, sigRSA)
assertError(t, err, "Verified ECDSA with an RSA key")
// Test ECDSA verify failure on unsupported algorithm
err = verify(RSA_PSS_SHA256, privECDSA.Public(), data, sigECDSA)
assertError(t, err, "Verified ECDSA with a bad algorithm")
// Test ECDSA verify failure on unsupported curve
err = verify(ECDSA_P384_SHA384, privECDSA.Public(), data, sigECDSA)
assertError(t, err, "Verified ECDSA with a bad algorithm")
// Test ECDSA verify failure on ASN.1 unmarshal failure
err = verify(ECDSA_P256_SHA256, privECDSA.Public(), data, sigECDSA[:8])
assertError(t, err, "Verified ECDSA with a bad ASN.1")
// Test ECDSA verify failure on trailing data
err = verify(ECDSA_P256_SHA256, privECDSA.Public(), data, append(sigECDSA, data...))
assertError(t, err, "Verified ECDSA with a trailing ASN.1")
// Test ECDSA verify failure on zero / negative values
zeroSigIn := ecdsaSignature{big.NewInt(0), big.NewInt(0)}
zeroSig, err := asn1.Marshal(zeroSigIn)
err = verify(ECDSA_P256_SHA256, privECDSA.Public(), data, zeroSig)
assertError(t, err, "Verified ECDSA with zero signature")
// Test ECDSA verify failure on signature validation failure
sigECDSA[7] ^= 0xFF
err = verify(ECDSA_P256_SHA256, privECDSA.Public(), data, sigECDSA)
assertError(t, err, "Verified ECDSA with corrupted signature")
sigECDSA[7] ^= 0xFF
// Test verify failure on unknown public key type
err = verify(ECDSA_P256_SHA256, struct{}{}, data, sigECDSA)
assertError(t, err, "Verified with invalid public key type")
}
func TestHKDF(t *testing.T) {
hash := crypto.SHA256
hkdfInput := unhex(hkdfInputHex)
hkdfSalt := unhex(hkdfSaltHex)
hkdfInfo := unhex(hkdfInfoHex)
HkdfExtractOutput := unhex(hkdfExtractOutputHex)
HkdfExtractZeroOutput := unhex(hkdfExtractZeroOutputHex)
HkdfExpandOutput := unhex(hkdfExpandOutputHex)
hkdfHash := unhex(hkdfHashHex)
hkdfEncodedLabel := unhex(hkdfEncodedLabelHex)
HkdfExpandLabelOutput := unhex(hkdfExpandLabelOutputHex)
// Test HkdfExtract is correct with salt
out := HkdfExtract(hash, hkdfSalt, hkdfInput)
assertByteEquals(t, out, HkdfExtractOutput)
// Test HkdfExtract is correct without salt
out = HkdfExtract(hash, nil, hkdfInput)
assertByteEquals(t, out, HkdfExtractZeroOutput)
// Test HkdfExpand is correct
out = HkdfExpand(hash, HkdfExtractOutput, hkdfInfo, hkdfExpandLen)
assertByteEquals(t, out, HkdfExpandOutput)
// Test hkdfEncodeLabel is correct
out = hkdfEncodeLabel(hkdfLabel, hkdfHash, hkdfExpandLen)
assertByteEquals(t, out, hkdfEncodedLabel)
// This is pro-forma, just for the coverage
out = HkdfExpandLabel(hash, hkdfSalt, hkdfLabel, hkdfHash, hkdfExpandLen)
assertByteEquals(t, out, HkdfExpandLabelOutput)
}
func random(n int) []byte {
data := make([]byte, n)
rand.Reader.Read(data)
return data
}