-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDive_Light_Basic-ATTiny84_standard_LEDs.ino
302 lines (234 loc) · 10.2 KB
/
Dive_Light_Basic-ATTiny84_standard_LEDs.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include <arduino.h>
#include <avr/sleep.h>
#include <avr/wdt.h>
#ifndef cbi // the following is needed to make sure the SLEEP system works.
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#define powerPin 9 // this is the pin that will be used to turn on and off the light. It is ACTIVE LOW
#define brightnessPin 10 // this is the Hall effect sensor that will be used to manage the intensity of the light. It is ACTIVE LOW
#define ledPin 5 // this is the pin the LEDs will be driven from. this is a PWM output for dimming control
#define redPin 2 // this it the PWM that will help display the battery power level
#define greenPin 3 // this it the PWM that will help display the battery power level
#define lowIntencity 0 // this is a simple LED to help display the birghtness level
#define highIntencity 1 // this is a simple LED to help display the birghtness level
#define hallPower 8 // this output provides power to the hall efect sensors or power and level control.
int powerLastState = 0; // this is to check that is happening on the input pin
int brightnessLastState = 0; // this is used to stop state cycling. You need to let go of the button to move to the next state.
int PowerState = 0; // this is used to determin if the power is on or off.
// this is needed because we are using PWM for the output and we can not just read the output pin value.
// a value of zero is off
// a value of one is on
int BrightnessValue = 1; // this is to keep track of the mode the leds are in
// BrightnessValue 3 is full intensity
// BrightnessValue 2 is 60% intensity
// BrightnessValue 1 is 20% intensity
long timeCheck; // this is used to check the power lever of the battery every second and update the LED to indicate the power level
long powerTime; // used to figure out when to power down.
long sleepTimer = 600000; // how long to wait before going to sleep (in milliseconds)
void setup() {
setupPins();
delay(10); // Wait for the hall effect sensors to settle. This is way longer than is really needed.
timeCheck = millis();
powerTime = millis();
}
void loop() {
if (timeCheck + 5000 < millis()) { // every five seconds, check the battery voltage and adjust display LED to show voltage
timeCheck = millis();
readVcc();
}
if (powerTime + sleepTimer < millis() && PowerState == 0) { // if nothing has happened for ten minutes and the light is off. put the system to sleep
while(digitalRead(powerPin)) { // wake up every two seconds and see if the power button has been pressed.
system_sleep(); // if the power button is not pressed, go back to sleep.
}
// if it was pressed reset pins states and turn the light on.
powerTime = millis();// rest timers
timeCheck = millis();
PowerState = 1;
powerLastState = 1;
blink();
ChangeState();
}
if (!digitalRead(brightnessPin) && !brightnessLastState && PowerState) { // This is the rutine that handles the brightness "button" being pushed.
brightnessLastState = 1; // change the tracking variable of the brightbess button pressing
powerTime = millis();
BrightnessValue ++; // increment the BrightnessValue variable
if (BrightnessValue > 3) { // check to see if the BrightnessValue variable is outside our range
BrightnessValue = 1; // reset it if it is
}
if (PowerState) { // if PowerSate variable is 1 then change the output intensity.
ChangeState();
}
delay(300); // to make sure there is no "bounce" in the button pressing we will wait 1/10th of a second after any events
// ******* this should not be required since the hall effect sensor is a digital devie and not a button
// ******* this should however not hurt.
}
if (!digitalRead(powerPin) && !powerLastState) { // This rutine handles what to do wth the power "button" is pressed
powerLastState = 1; // take note of the button press
powerTime = millis();
if (!PowerState) { // if PowerSate valiable is 0 then and the button was pushed, turn it on and change the powerstate variable
PowerState = 1;
ChangeState();
readVcc();
} else { // if powerstate is on, turn it off and reset variable.
PowerState = 0;
analogWrite(ledPin, 0);
digitalWrite(lowIntencity, LOW);
digitalWrite(highIntencity, LOW);
analogWrite(redPin, 0);
analogWrite(greenPin, 0);
}
delay(300); // to make sure there is no "bouce" in the button pressing we will wait 1/10th of a second after any events
// ******* this should not be required since the hall effect sensor is a digital devie and not a button
// ******* this should however not hurt.
}
if (digitalRead(powerPin) && powerLastState ) {
powerLastState = 0; // take note of the new state of the Power pin
}
if (digitalRead(brightnessPin) && brightnessLastState ) {
brightnessLastState = 0; // take note of the new state of the Brightness pin
}
}
void ChangeState() {
switch (BrightnessValue) { // check the BrightnessValue variable and react to its value
case 1:
analogWrite(ledPin, 51); // set the output to 20%
digitalWrite(lowIntencity, HIGH);
digitalWrite(highIntencity, LOW);
break;
case 2:
analogWrite(ledPin, 153); // set the output to 60%
digitalWrite(lowIntencity, LOW);
digitalWrite(highIntencity, HIGH);
break;
case 3:
analogWrite(ledPin, 255); // set the output to 100%
digitalWrite(lowIntencity, HIGH);
digitalWrite(highIntencity, HIGH);
break;
default:
analogWrite(ledPin, 255); // if the BrightnessValue variable is zero turn off the led
BrightnessValue = 1;
digitalWrite(lowIntencity, HIGH);
digitalWrite(highIntencity, HIGH);
break;
}
}
// system wakes up when wtchdog is timed out
void system_sleep() {
sleepPins();
setup_watchdog(7); // set the watchdog timer to two seconds.
cbi(ADCSRA, ADEN); // switch Analog to Digital converter OFF
// sleepPins(); // put all pins in input pullup mode to save power
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
sleep_enable();
sleep_mode(); // System sleeps here
sleep_disable(); // System continues execution here when watchdog timed out
wdt_disable();
sbi(ADCSRA, ADEN); // switch Analog to Digitalconverter ON
pinMode(powerPin, INPUT); // set the touch controll input pin to input and turn on the internal pull up resistor
pinMode(hallPower, OUTPUT);
digitalWrite(hallPower, HIGH);
delay(5);
setupPins();
delay(5);
}
// ******************************************************************************
// 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(int ii) {
byte bb;
int ww;
if (ii > 9 ) ii = 9;
bb = ii & 7;
if (ii > 7) bb |= (1 << 5);
bb |= (1 << WDCE);
ww = bb;
MCUSR &= ~(1 << WDRF);
// start timed sequence
WDTCSR |= (1 << WDCE) | (1 << WDE);
// set new watchdog timeout value
WDTCSR = bb;
WDTCSR |= _BV(WDIE);
}
void sleepPins() {
pinMode(powerPin, OUTPUT); // set all pins to output and go low to save as much power as possible.
digitalWrite(powerPin, LOW);
pinMode(brightnessPin, OUTPUT);
digitalWrite(powerPin, LOW);
pinMode(ledPin, OUTPUT);
digitalWrite(ledPin, LOW);
pinMode(redPin, OUTPUT);
digitalWrite(redPin, LOW);
pinMode(greenPin, OUTPUT);
digitalWrite(greenPin, LOW);
pinMode(lowIntencity, OUTPUT);
digitalWrite(lowIntencity, LOW);
pinMode(highIntencity, OUTPUT);
digitalWrite(highIntencity, LOW);
pinMode(hallPower, OUTPUT);
digitalWrite(hallPower, LOW);
}
ISR(WDT_vect) {
// Don't do anything here but we must include this
// block of code otherwise the interrupt calls an
// uninitialized interrupt handler.
}
void blink() {
for (int i=0; i<3; i++) {
digitalWrite(lowIntencity, HIGH);
delay(50);
digitalWrite(lowIntencity, LOW);
delay(50);
}
}
void setupPins() {
pinMode(powerPin, INPUT); // set the state of all the pins needed to operate
pinMode(brightnessPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
digitalWrite(ledPin, LOW);
pinMode(redPin, OUTPUT);
analogWrite(redPin, 0);
pinMode(greenPin, OUTPUT);
analogWrite(greenPin, 0);
pinMode(lowIntencity, OUTPUT);
digitalWrite(lowIntencity, LOW);
pinMode(highIntencity, OUTPUT);
digitalWrite(highIntencity, LOW);
pinMode(hallPower, OUTPUT);
digitalWrite(hallPower, HIGH);
}
void readVcc() { // this function is used to get the current supply voltage and changes the color of the meter led based on the battery voltage
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0) ;
#else
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#endif
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Start conversion
while (bit_is_set(ADCSRA, ADSC)); // measuring
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
uint8_t high = ADCH; // unlocks both
long result = (high << 8) | low;
//result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
result = 1211861L / result - 3200;
int Full = 1200; // this is the value of a full battery in mV
int Empty = 0; //this is the value of an empty battery
float batteryPercent = float(result) / Full * 100; // this is used to find the battery power expressed as a percent
int green = batteryPercent; // set the green value to the battery percentage
if (green < 50 ) {
int green = batteryPercent - 10; // if the battery percent is below 50% reduce green by 10 percent to make sure red is red as the voltage goes down
}
if (green < 0) { // since we reduce greens value by 10 percent we need to make sure there is no negative values
green = 0;
}
int red = 100 - batteryPercent;
if (PowerState) {
analogWrite(redPin, red);
analogWrite(greenPin, green);
}
}