forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_lora_to_gguf.py
executable file
·406 lines (342 loc) · 15 KB
/
convert_lora_to_gguf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from dataclasses import dataclass
import logging
import argparse
import os
import sys
import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model
logger = logging.getLogger("lora-to-gguf")
@dataclass
class PartialLoraTensor:
A: Tensor | None = None
B: Tensor | None = None
# magic to support tensor shape modifications and splitting
class LoraTorchTensor:
_lora_A: Tensor # (n_rank, row_size)
_lora_B: Tensor # (col_size, n_rank)
_rank: int
def __init__(self, A: Tensor, B: Tensor):
assert len(A.shape) == len(B.shape)
assert A.shape[-2] == B.shape[-1]
if A.dtype != B.dtype:
A = A.to(torch.float32)
B = B.to(torch.float32)
self._lora_A = A
self._lora_B = B
self._rank = B.shape[-1]
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
return (self._lora_A, self._lora_B)
def __getitem__(
self,
indices: (
SupportsIndex
| slice
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
),
) -> LoraTorchTensor:
shape = self.shape
if isinstance(indices, SupportsIndex):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
raise NotImplementedError # can't return a vector
elif isinstance(indices, slice):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
elif isinstance(indices, tuple):
assert len(indices) > 0
if indices[-1] is Ellipsis:
return self[indices[:-1]]
# expand ellipsis
indices = tuple(
u
for v in (
(
(slice(None, None) for _ in range(len(indices) - 1))
if i is Ellipsis
else (i,)
)
for i in indices
)
for u in v
)
if len(indices) < len(shape):
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
# TODO: make sure this is correct
indices_A = (
*(
(
j.__index__() % self._lora_A.shape[i]
if isinstance(j, SupportsIndex)
else slice(None, None)
)
for i, j in enumerate(indices[:-2])
),
slice(None, None),
indices[-1],
)
indices_B = indices[:-1]
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
else:
raise NotImplementedError # unknown indice type
@property
def dtype(self) -> torch.dtype:
assert self._lora_A.dtype == self._lora_B.dtype
return self._lora_A.dtype
@property
def shape(self) -> tuple[int, ...]:
assert len(self._lora_A.shape) == len(self._lora_B.shape)
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
def size(self, dim=None):
assert dim is None
return self.shape
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
if isinstance(shape[0], tuple):
new_shape: tuple[int, ...] = shape[0]
else:
new_shape = cast(tuple[int, ...], shape)
orig_shape = self.shape
if len(new_shape) < 2:
raise NotImplementedError # can't become a vector
# expand -1 in the shape
if any(dim == -1 for dim in new_shape):
n_elems = prod(orig_shape)
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
assert n_elems % n_new_elems == 0
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
if new_shape[-1] != orig_shape[-1]:
raise NotImplementedError # can't reshape the row size trivially
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
shape_B = (*new_shape[:-1], self._rank)
return LoraTorchTensor(
self._lora_A.reshape(shape_A),
self._lora_B.reshape(shape_B),
)
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
return self.reshape(*other.shape)
def view(self, *size: int) -> LoraTorchTensor:
return self.reshape(*size)
def permute(self, *dims: int) -> LoraTorchTensor:
shape = self.shape
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
if dims[-1] == -1:
# TODO: support higher dimensional A shapes bigger than 1
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
else:
# TODO: compose the above two
raise NotImplementedError
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
shape = self.shape
dims = [i for i in range(len(shape))]
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
return self.permute(*dims)
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
return self.transpose(axis0, axis1)
def to(self, *args, **kwargs):
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
@classmethod
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.permute:
return type(args[0]).permute(*args, **kwargs)
elif func is torch.reshape:
return type(args[0]).reshape(*args, **kwargs)
elif func is torch.stack:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
return LoraTorchTensor(
torch.stack([a._lora_A for a in args[0]], dim),
torch.stack([b._lora_B for b in args[0]], dim),
)
elif func is torch.cat:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
if len(args[0][0].shape) > 2:
return LoraTorchTensor(
torch.cat([a._lora_A for a in args[0]], dim),
torch.cat([b._lora_B for b in args[0]], dim),
)
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
return LoraTorchTensor(
args[0][0]._lora_A,
torch.cat([b._lora_B for b in args[0]], dim),
)
else:
raise NotImplementedError
else:
raise NotImplementedError
def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
return base_name
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"--no-lazy", action="store_true",
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--dry-run", action="store_true",
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"auto": gguf.LlamaFileType.GUESSED,
}
ftype = ftype_map[args.outtype]
dir_base_model: Path = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_lora
if os.path.exists(input_model):
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
lora_model = load_file(input_model, device="cpu")
else:
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
class LoraModel(model_class):
model_arch = model_class.model_arch
lora_alpha: float
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
super().__init__(*args, **kwargs)
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
return ()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_map: dict[str, PartialLoraTensor] = {}
for name, tensor in lora_model.items():
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Hint: if you are using TRL, make sure not to call setup_chat_format()")
sys.exit(1)
if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
else:
tensor_map[base_name].B = tensor
else:
if is_lora_a:
tensor_map[base_name] = PartialLoraTensor(A=tensor)
else:
tensor_map[base_name] = PartialLoraTensor(B=tensor)
for name, tensor in tensor_map.items():
assert tensor.A is not None
assert tensor.B is not None
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
dest = list(super().modify_tensors(data_torch, name, bid))
# some archs may have the same tensor for lm_head and output (tie word embeddings)
# in this case, adapters targeting lm_head will fail when using llama-export-lora
# therefore, we ignore them for now
# see: https://github.com/ggerganov/llama.cpp/issues/9065
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError("lm_head is present in adapter, but is ignored in base model")
for dest_name, dest_data in dest:
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
dir_base_model,
ftype,
fname_out,
is_big_endian=args.bigendian,
use_temp_file=False,
eager=args.no_lazy,
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
)
logger.info("Exporting model...")
model_instance.write()
logger.info(f"Model successfully exported to {model_instance.fname_out}")