From ae29c4044a3fdb6f25b853d01ecae5cea25f153c Mon Sep 17 00:00:00 2001 From: Thomas Wutzler <twutz@bgc-jena.mpg.de> Date: Mon, 4 Jan 2021 19:41:09 +0100 Subject: [PATCH] added random seed in tests to avoid accidental failing of the tests --- DESCRIPTION | 2 +- inst/unitTests/runitLogitnorm.R | 4 +- inst/unitTests/runitmodeLogitnorm.R | 88 +++++++++++++------------- inst/unitTests/runitmomentsLogitnorm.R | 64 ++++++++++--------- 4 files changed, 82 insertions(+), 76 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index dae4f7e..2dcbdbf 100755 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -9,4 +9,4 @@ Suggests: RUnit, knitr, ggplot2, reshape2 VignetteBuilder: knitr License: GPL-2 LazyData: true -RoxygenNote: 6.0.1 +RoxygenNote: 7.1.1 diff --git a/inst/unitTests/runitLogitnorm.R b/inst/unitTests/runitLogitnorm.R index d025fcb..68c0a83 100755 --- a/inst/unitTests/runitLogitnorm.R +++ b/inst/unitTests/runitLogitnorm.R @@ -38,6 +38,7 @@ test.plogitnorm <- function(){ test.dlogitnorm <- function(){ q <- c(-1,0,0.5,1,2) + set.seed(0815) ans <- suppressWarnings(dlogitnorm(q)) checkEquals(c(0,0,1.595769,0,0), ans, tolerance = 1e-7) } @@ -80,7 +81,8 @@ test.twCoefLogitnormMLE <- function(){ test.twCoefLogitnormE <- function(){ - theta <- twCoefLogitnormE(0.7,0.9) + set.seed(0815) + theta <- twCoefLogitnormE(0.7,0.9) px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function #plot(px~x); abline(v = c(0.7,0.9)); abline(h = c(0.5,0.975)) diff --git a/inst/unitTests/runitmodeLogitnorm.R b/inst/unitTests/runitmodeLogitnorm.R index a73f46f..f3b743e 100755 --- a/inst/unitTests/runitmodeLogitnorm.R +++ b/inst/unitTests/runitmodeLogitnorm.R @@ -1,43 +1,45 @@ -#TODO - -.setUp <-function () { -} - -.tearDown <- function () { -} - -test.rightMode <- function(){ - theta0 <- c(mu=1.5, sigma=0.8) - #plot the true and the rediscovered distributions - xGrid = seq(0,1, length.out=81)[-c(1,81)] - dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) - plot( dx~xGrid, type="l") - - mle <- modeLogitnorm(mu=theta0[1], sigma=theta0[2] ) - abline(v=mle,col="gray") - - #check by monte carlo integration - #z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) - #dz <- density(z) - #checkEqualsNumeric( dz$x[which.max(dz$y)], mle, tolerance=5e-2) - checkEqualsNumeric( 0.88, mle, tolerance=1e-2) -} - -test.leftMode <- function(){ - theta0 <- c(mu=-1.5, sigma=0.8) - #plot the true and the rediscovered distributions - xGrid = seq(0,1, length.out=81)[-c(1,81)] - dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) - plot( dx~xGrid, type="l") - - mle <- modeLogitnorm(mu=theta0[1], sigma=theta0[2] ) - abline(v=mle,col="gray") - - #check by monte carlo integration - # deprecated: did not run on Windows - #z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) - #dz <- density(z) - #checkEqualsNumeric( dz$x[which.max(dz$y)], mle, tolerance=5e-2) - checkEqualsNumeric( 0.12, mle, tolerance=1e-2) # regression 0.12 calculated previously -} - +#TODO + +.setUp <-function () { +} + +.tearDown <- function () { +} + +test.rightMode <- function(){ + theta0 <- c(mu=1.5, sigma=0.8) + #plot the true and the rediscovered distributions + xGrid = seq(0,1, length.out=81)[-c(1,81)] + dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) + plot( dx~xGrid, type="l") + + set.seed(0815) + mle <- modeLogitnorm(mu=theta0[1], sigma=theta0[2] ) + abline(v=mle,col="gray") + + #check by monte carlo integration + #z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) + #dz <- density(z) + #checkEqualsNumeric( dz$x[which.max(dz$y)], mle, tolerance=5e-2) + checkEqualsNumeric( 0.88, mle, tolerance=1e-2) +} + +test.leftMode <- function(){ + theta0 <- c(mu=-1.5, sigma=0.8) + #plot the true and the rediscovered distributions + xGrid = seq(0,1, length.out=81)[-c(1,81)] + dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) + plot( dx~xGrid, type="l") + + set.seed(0815) + mle <- modeLogitnorm(mu=theta0[1], sigma=theta0[2] ) + abline(v=mle,col="gray") + + #check by monte carlo integration + # deprecated: did not run on Windows + #z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) + #dz <- density(z) + #checkEqualsNumeric( dz$x[which.max(dz$y)], mle, tolerance=5e-2) + checkEqualsNumeric( 0.12, mle, tolerance=1e-2) # regression 0.12 calculated previously +} + diff --git a/inst/unitTests/runitmomentsLogitnorm.R b/inst/unitTests/runitmomentsLogitnorm.R index bc4221b..98dbcc3 100755 --- a/inst/unitTests/runitmomentsLogitnorm.R +++ b/inst/unitTests/runitmomentsLogitnorm.R @@ -1,31 +1,33 @@ -#TODO - -.setUp <-function () { -} - -.tearDown <- function () { -} - -test.1 <- function(){ - theta0 <- c(mu=1.5, sigma=0.8) - #plot the true and the rediscovered distributions - xGrid = seq(0,1, length.out=81)[-c(1,81)] - dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) - plot( dx~xGrid, type="l") - - moments <- momentsLogitnorm(mu=theta0[1], sigma=theta0[2] ) - #check by monte carlo integration - z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) - checkEqualsNumeric( mean(z), moments["mean"], tolerance=1e-3) - checkEqualsNumeric( var(z), moments["var"], tolerance=6e-3) -} - -test.momentsLogitnorm41 <- function(){ - (res <- momentsLogitnorm(4,1)) - checkEqualsNumeric( c(0.97189602, 0.00101663), res) -} - -test.momentsLogitnorm501 <- function(){ - (res <- momentsLogitnorm(5,0.1)) - checkEqualsNumeric( c(9.932743e-01, 4.484069e-07), res, tolerance=1e-7) -} +#TODO + +.setUp <-function () { +} + +.tearDown <- function () { +} + +test.1 <- function(){ + set.seed(0815) + theta0 <- c(mu=1.5, sigma=0.8) + #plot the true and the rediscovered distributions + xGrid = seq(0,1, length.out=81)[-c(1,81)] + dx <- dlogitnorm(xGrid, mu=theta0[1], sigma=theta0[2]) + plot( dx~xGrid, type="l") + + moments <- momentsLogitnorm(mu=theta0[1], sigma=theta0[2] ) + #check by monte carlo integration + z <- rlogitnorm(1e6, mu=theta0[1], sigma=theta0[2]); var(z) + checkEqualsNumeric( mean(z), moments["mean"], tolerance=1e-3) + checkEqualsNumeric( var(z), moments["var"], tolerance=1e-2) +} + +test.momentsLogitnorm41 <- function(){ + (res <- momentsLogitnorm(4,1)) + checkEqualsNumeric( c(0.97189602, 0.00101663), res) +} + +test.momentsLogitnorm501 <- function(){ + set.seed(0815) + (res <- momentsLogitnorm(5,0.1)) + checkEqualsNumeric( c(9.932743e-01, 4.484069e-07), res, tolerance=1e-7) +}