-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpitch.py
103 lines (84 loc) · 3.06 KB
/
pitch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#! /usr/bin/env python
import sys
from aubio import source, pitch
if len(sys.argv) < 2:
print("Usage: %s <filename> [samplerate]" % sys.argv[0])
sys.exit(1)
filename = sys.argv[1]
downsample = 1
samplerate = 44100 // downsample
if len( sys.argv ) > 2: samplerate = int(sys.argv[2])
win_s = 4096 // downsample # fft size
hop_s = 512 // downsample # hop size
s = source(filename, samplerate, hop_s)
samplerate = s.samplerate
tolerance = 0.8
pitch_o = pitch("yin", win_s, hop_s, samplerate)
pitch_o.set_unit("midi")
pitch_o.set_tolerance(tolerance)
pitches = []
confidences = []
# total number of frames read
total_frames = 0
while True:
samples, read = s()
pitch = pitch_o(samples)[0]
#pitch = int(round(pitch))
confidence = pitch_o.get_confidence()
#if confidence < 0.8: pitch = 0.
print("%f %f %f" % (total_frames / float(samplerate), pitch, confidence))
pitches += [pitch]
confidences += [confidence]
total_frames += read
if read < hop_s: break
if 0: sys.exit(0)
#print pitches
import os.path
from numpy import array, ma
import matplotlib.pyplot as plt
from demo_waveform_plot import get_waveform_plot, set_xlabels_sample2time
skip = 1
pitches = array(pitches[skip:])
confidences = array(confidences[skip:])
times = [t * hop_s for t in range(len(pitches))]
fig = plt.figure()
ax1 = fig.add_subplot(311)
ax1 = get_waveform_plot(filename, samplerate = samplerate, block_size = hop_s, ax = ax1)
plt.setp(ax1.get_xticklabels(), visible = False)
ax1.set_xlabel('')
def array_from_text_file(filename, dtype = 'float'):
filename = os.path.join(os.path.dirname(__file__), filename)
return array([line.split() for line in open(filename).readlines()],
dtype = dtype)
ax2 = fig.add_subplot(312, sharex = ax1)
ground_truth = os.path.splitext(filename)[0] + '.f0.Corrected'
if os.path.isfile(ground_truth):
ground_truth = array_from_text_file(ground_truth)
true_freqs = ground_truth[:,2]
true_freqs = ma.masked_where(true_freqs < 2, true_freqs)
true_times = float(samplerate) * ground_truth[:,0]
ax2.plot(true_times, true_freqs, 'r')
ax2.axis( ymin = 0.9 * true_freqs.min(), ymax = 1.1 * true_freqs.max() )
# plot raw pitches
ax2.plot(times, pitches, '.g')
# plot cleaned up pitches
cleaned_pitches = pitches
#cleaned_pitches = ma.masked_where(cleaned_pitches < 0, cleaned_pitches)
#cleaned_pitches = ma.masked_where(cleaned_pitches > 120, cleaned_pitches)
cleaned_pitches = ma.masked_where(confidences < tolerance, cleaned_pitches)
ax2.plot(times, cleaned_pitches, '.-')
#ax2.axis( ymin = 0.9 * cleaned_pitches.min(), ymax = 1.1 * cleaned_pitches.max() )
#ax2.axis( ymin = 55, ymax = 70 )
plt.setp(ax2.get_xticklabels(), visible = False)
ax2.set_ylabel('f0 (midi)')
# plot confidence
ax3 = fig.add_subplot(313, sharex = ax1)
# plot the confidence
ax3.plot(times, confidences)
# draw a line at tolerance
ax3.plot(times, [tolerance]*len(confidences))
ax3.axis( xmin = times[0], xmax = times[-1])
ax3.set_ylabel('confidence')
set_xlabels_sample2time(ax3, times[-1], samplerate)
plt.show()
#plt.savefig(os.path.basename(filename) + '.svg')