-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumIntSimpson.m
82 lines (74 loc) · 2.82 KB
/
NumIntSimpson.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
% Numerical Integration
% compares Simpson's Rule to the Trapezoidal Rule
%% default parameters
lowerLim = 903.5;
upperLim = 919.5;
dirData = strcat(pwd, '\test data'); % start in current folder, add subfolder
%% read data, display details
msg = 'Input Data File ...';
[inpPathname, inpFilename, header, xRaw, dx, yRaw] = readTxtFile(dirData, msg);
xMin = min(xRaw); xMax = max(xRaw);
Npt = length(xRaw);
fprintf('\tData: %s\n\tHeader: %s\n\t# data points: %d\n\tx range: %.2f - %.2f, with spacing %0.2f\n', ...
fullfile(inpPathname, inpFilename), header, Npt, xMin, xMax, dx);
fprintf('\n');
%% specify integration limits
dummy = input(sprintf('Enter the lower integration limit (default %0.2f): ', lowerLim));
if ~isempty(dummy)
if ( dummy >= xMin ) && ( dummy < xMax )
lowerLim = dummy;
elseif ( lowerLim >= xMin ) && ( lowerLim < xMax )
fprintf('\tUsing default value\n');
else
lowerLim = xMin;
fprintf('\tOut of range - using minimum value\n');
end
else
if ( lowerLim >= xMin ) && ( lowerLim < xMax )
fprintf('\tUsing default value\n');
else
lowerLim = xMin;
fprintf('\tOut of range - using minimum value\n');
end
end
dummy = input(sprintf('Enter the upper integration limit (default %0.2f): ', upperLim));
if ~isempty(dummy)
if ( dummy > lowerLim ) && ( dummy <= xMax )
upperLim = dummy;
elseif ( upperLim > lowerLim ) && ( upperLim <= xMax )
fprintf('\tUsing default value\n');
else
upperLim = xMax;
fprintf('\tOut of range - using maximum value\n');
end
else
if ( upperLim > lowerLim ) && ( upperLim <= xMax )
fprintf('\tUsing default value\n');
else
upperLim = xMax;
fprintf('\tOut of range - using maximum value\n');
end
end
%% truncate data and calculate integral
xInt = xRaw(xRaw >= lowerLim & xRaw <= upperLim);
yInt = yRaw(xRaw >= lowerLim & xRaw <= upperLim);
trap = trapz(xInt, yInt); % MATLAB function, corrects for non-unit spacing
[method, simp] = Simpson(xInt, yInt);
%% print results
fprintf('\n')
fprintf('Integrate from %0.2f - %0.2f:\n', min(xInt), max(xInt))
fprintf('(%d segments, %d data pts)\n', length(xInt)-1, length(xInt))
fprintf('\tTrapezoidal Rule: %0.6f\n', trap)
fprintf('\t%s: %0.6f\n', method, simp)
fprintf('\tDelta = %f ppm\n', (trap-simp)/trap*1E6)
%% plot results
figure(399); clf; set(399,'Name','Numerical Integration');
ax = gca;
plot(xRaw,yRaw)
ylim auto
hold on
hh = plot([lowerLim,lowerLim],[ax.YLim(1),ax.YLim(2)],[upperLim,upperLim],[ax.YLim(1),ax.YLim(2)]);
hh(1).LineStyle = '--'; hh(1).LineWidth = 1.0; hh(1).Color = 'r';
hh(2).LineStyle = '--'; hh(2).LineWidth = 1.0; hh(2).Color = 'r';
title(sprintf('limits: %0.2f - %0.2f, dx = %0.2f, Trapz = %.6G, %s = %.6G', lowerLim, upperLim, dx, trap, method, simp))
plotbrowser 'on'