-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbatched_zgetrs.cxx
288 lines (240 loc) · 8.63 KB
/
batched_zgetrs.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include <complex>
#include <iostream>
#include <fstream>
#include <sstream>
#include <numeric>
#include <string>
#include <typeinfo>
#include <time.h>
#define NRUNS 10
#include "CL/sycl.hpp"
#include "oneapi/mkl.hpp"
using index_t = std::int64_t;
template <typename T>
inline void read_carray(std::ifstream& f, int n, std::complex<T>* Adata) {
for (int i=0; i < n; i++) {
//std::cout << i << " " << std::endl;
f >> Adata[i];
}
}
inline void read_iarray(std::ifstream& f, int n, int *data) {
for (int i=0; i < n; i++) {
f >> data[i];
}
}
template <typename T>
void test(cl::sycl::queue q, index_t n=140, index_t nrhs=1, index_t batch_size=384) {
index_t lda, ldb;
int Aptr_count, Bptr_count, Adata_count, Bdata_count, piv_count;
std::complex<T> **h_Aptr, **d_Aptr, **h_Bptr, **d_Bptr;
std::complex<T> *h_Adata, *d_Adata, *h_Bdata, *d_Bdata;
index_t **h_piv_ptr, **d_piv_ptr;
index_t *h_piv, *d_piv;
using CT = std::complex<T>;
#ifdef READ_INPUT
std::ifstream f("zgetrs.txt", std::ifstream::in);
f >> n;
f >> nrhs;
f >> lda;
f >> ldb;
f >> batch_size;
#else
lda = n;
ldb = n;
#endif
std::cout << "n = " << n << std::endl;
std::cout << "nrhs = " << nrhs << std::endl;
std::cout << "lda = " << lda << std::endl;
std::cout << "ldb = " << ldb << std::endl;
std::cout << "batch_size = " << batch_size << std::endl;
Aptr_count = Bptr_count = batch_size;
Adata_count = n * n * batch_size;
Bdata_count = n * nrhs * batch_size;
piv_count = n * batch_size;
std::cout << "Aptr count = " << Aptr_count << std::endl;
std::cout << "Bptr count = " << Bptr_count << std::endl;
std::cout << "Adata count = " << Adata_count << std::endl;
std::cout << "Bdata count = " << Bdata_count << std::endl;
std::cout << "piv_count = " << piv_count << std::endl;
h_Aptr = cl::sycl::malloc_host<CT*>(Aptr_count, q);
h_Bptr = cl::sycl::malloc_host<CT*>(Bptr_count, q);
d_Aptr = cl::sycl::malloc_device<CT*>(Aptr_count, q);
d_Bptr = cl::sycl::malloc_device<CT*>(Bptr_count, q);
h_Adata = cl::sycl::malloc_host<CT>(Adata_count, q);
h_Bdata = cl::sycl::malloc_host<CT>(Bdata_count, q);
d_Adata = cl::sycl::malloc_device<CT>(Adata_count, q);
d_Bdata = cl::sycl::malloc_device<CT>(Bdata_count, q);
h_piv_ptr = cl::sycl::malloc_host<index_t*>(batch_size, q);
d_piv_ptr = cl::sycl::malloc_device<index_t*>(batch_size, q);
h_piv = cl::sycl::malloc_host<index_t>(piv_count, q);
d_piv = cl::sycl::malloc_device<index_t>(piv_count, q);
std::cout << "malloc done" << std::endl;
#ifdef READ_INPUT
read_carray(f, n*n*batch_size, h_Adata);
read_carray(f, n*nrhs*batch_size, h_Bdata);
read_iarray(f, n*batch_size, h_piv);
f.close();
#else
std::ostringstream ss;
std::string run_label;
ss << "n=" << n << ";nrhs=" << nrhs << ";batches=" << batch_size
<< ";t=" << typeid(T).name();
run_label = ss.str();
q.fill<CT>(h_Adata, CT(0.0, 0.0), Adata_count);
q.fill<CT>(h_Bdata, CT(0.0, 0.0), Bdata_count);
q.wait();
for (int b = 0; b < batch_size; b++) {
for (int i = 0; i < n; i++) {
h_Adata[b*n*n + i*n + i] = CT(1.0, 0.0);
for (int j = 0; j < nrhs; j++) {
h_Bdata[b*n*nrhs + i*nrhs + j] = CT(i / (j+1) * b, i * j / (b+1));
}
h_piv[b*n + i] = i+1;
}
}
#endif
for (int i = 0; i < batch_size; i++) {
h_Aptr[i] = d_Adata + (n*n*i);
h_Bptr[i] = d_Bdata + (n*nrhs*i);
h_piv_ptr[i] = d_piv + (i*n);
}
std::cout << "read/init done" << std::endl;
q.copy(h_Aptr, d_Aptr, Aptr_count);
q.copy(h_Adata, d_Adata, Adata_count);
q.copy(h_Bptr, d_Bptr, Bptr_count);
q.copy(h_Bdata, d_Bdata, Bdata_count);
q.copy(h_piv_ptr, d_piv_ptr, batch_size);
q.copy(h_piv, d_piv, piv_count);
q.wait();
std::cout << "memcpy done" << std::endl;
struct timespec start, end;
double elapsed, total = 0.0;
double total_strided = 0.0;
int *info, info_sum;
auto trans_op = oneapi::mkl::transpose::nontrans;
auto scratch_count = oneapi::mkl::lapack::getrs_batch_scratchpad_size<CT>(
q, &trans_op, &n, &nrhs, &lda, &ldb, 1, &batch_size);
auto scratch = cl::sycl::malloc_device<CT>(scratch_count, q);
auto scratch_count2 = oneapi::mkl::lapack::getrs_batch_scratchpad_size<CT>(
q, trans_op, n, nrhs, lda, n*n, n, ldb, n*nrhs, batch_size);
auto scratch2 = cl::sycl::malloc_device<CT>(scratch_count2, q);
for (int i=0; i<NRUNS; i++) {
// std::cout << "run [" << i << "]: start" << std::endl;
clock_gettime(CLOCK_MONOTONIC, &start);
auto e = oneapi::mkl::lapack::getrs_batch(
q, &trans_op, &n, &nrhs, h_Aptr, &lda, h_piv_ptr, h_Bptr, &ldb,
1, &batch_size, scratch, scratch_count);
e.wait();
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9;
if (i > 0)
total += elapsed;
std::cout << "run group [" << i << "]: " << elapsed << std::endl;
clock_gettime(CLOCK_MONOTONIC, &start);
try {
auto e2 = oneapi::mkl::lapack::getrs_batch(
q, trans_op, n, nrhs, d_Adata, lda, n*n, d_piv, n, d_Bdata, ldb,
n*nrhs, batch_size, scratch2, scratch_count2);
e2.wait();
} catch(oneapi::mkl::lapack::invalid_argument const &e) {
std::cerr << e.what() << " arg #: "
<< e.info() << std::endl;
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9;
if (i > 0)
total_strided += elapsed;
std::cout << "run stride [" << i << "]: " << elapsed << std::endl;
}
std::cout << "zgetrs done" << std::endl;
std::cout << run_label << " avg group " << total / (NRUNS-1) << std::endl;
std::cout << run_label << " avg stride " << total_strided / (NRUNS-1) << std::endl;
#ifndef READ_INPUT
// check result
q.copy(d_Bdata, h_Bdata, Bdata_count);
q.wait();
bool ok = true;
CT err = CT(0.0, 0.0);
for (int b = 0; b < batch_size; b++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < nrhs; j++) {
err = h_Bdata[b*n*nrhs + i*nrhs + j] - CT(i / (j+1) * b, i * j / (b+1));
if (std::abs(err) > 0.0) {
std::cout << "err of " << err
<< " at [" << b << ", " << i
<<", " << j << "]" << std::endl;
ok = false;
break;
}
}
if (!ok)
break;
}
if (!ok)
break;
}
#endif
cl::sycl::free(scratch, q);
cl::sycl::free(h_Aptr, q);
cl::sycl::free(h_Bptr, q);
cl::sycl::free(d_Aptr, q);
cl::sycl::free(d_Bptr, q);
cl::sycl::free(h_Adata, q);
cl::sycl::free(h_Bdata, q);
cl::sycl::free(d_Adata, q);
cl::sycl::free(d_Bdata, q);
cl::sycl::free(h_piv_ptr, q);
cl::sycl::free(d_piv_ptr, q);
cl::sycl::free(h_piv, q);
cl::sycl::free(d_piv, q);
std::cout << "free done" << std::endl;
}
inline auto get_exception_handler()
{
static auto exception_handler = [](cl::sycl::exception_list exceptions) {
for (std::exception_ptr const& e : exceptions) {
try {
std::rethrow_exception(e);
} catch (cl::sycl::exception const& e) {
std::cerr << "Caught asynchronous SYCL exception:" << std::endl
<< e.what() << std::endl;
abort();
}
}
};
return exception_handler;
}
int main(int argc, char **argv) {
auto q = cl::sycl::queue{get_exception_handler()};
auto dev = q.get_device();
std::string type;
if (dev.is_cpu()) {
type = "CPU ";
} else if (dev.is_gpu()) {
type = "GPU ";
} else if (dev.is_host()) {
type = "HOST ";
} else {
type = "OTHER";
}
std::cout << "[" << type << "] "
<< dev.get_info<cl::sycl::info::device::name>()
<< " {" << dev.get_info<cl::sycl::info::device::vendor>() << "}"
<< std::endl;
index_t n = 140;
index_t nrhs = 1;
index_t batch_size = 384;
if (argc > 1) {
n = std::stoi(argv[1]);
}
if (argc > 2) {
nrhs = std::stoi(argv[2]);
}
if (argc > 2) {
batch_size = std::stoi(argv[3]);
}
std::cout << "==== float ====" << std::endl;
test<float>(q, n, nrhs, batch_size);
std::cout << "==== double ====" << std::endl;
test<double>(q, n, nrhs, batch_size);
}