forked from skezle/continual-dreamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_minigrid.py
134 lines (116 loc) · 4.42 KB
/
train_minigrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import shutil
import wandb
import gym
from gym_minigrid.wrappers import *
import dreamerv2.api as dv2
from input_args import parse_minigrid_args
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
def run_minigrid(args):
tag = args.tag + "_" + str(args.seed)
config = dv2.defaults.update({
'logdir': '{0}/minigrid_{1}'.format(args.logdir, tag),
'log_every': 1e3,
'log_every_video': 2e5,
'train_every': 10,
'prefill': 1e4,
'time_limit': 100,
'actor_ent': 3e-3,
'loss_scales.kl': 1.0,
'discount': 0.99,
'steps': args.steps,
'cl': args.cl,
'num_tasks': args.num_tasks,
'num_task_repeats': args.num_task_repeats,
'seed': args.seed,
'eval_every': 1e4,
'eval_steps': 1e3,
'tag': tag,
"unbalanced_steps": args.unbalanced_steps,
'replay.capacity': args.replay_capacity,
'replay.reservoir_sampling': args.reservoir_sampling,
'replay.recent_past_sampl_thres': args.recent_past_sampl_thres,
'sep_exp_eval_policies': args.sep_exp_eval_policies,
'replay.minlen': args.minlen,
'wandb.group': args.wandb_group,
'wandb.name': f"{dv2.defaults.expl_behavior}_cl_{tag}" if args.cl else f"{dv2.defaults.expl_behavior}_single-env={args.env}_{tag}",
'wandb.project': args.wandb_proj_name,
}).parse_flags()
# from https://github.com/danijar/crafter-baselines/blob/main/plan2explore/main.py
if args.plan2explore:
config = config.update({
'expl_behavior': 'Plan2Explore',
'pred_discount': args.rssm_full_recon,
'grad_heads': ['decoder', 'reward', 'discount'] if args.rssm_full_recon else ['decoder'],
'expl_intr_scale': args.expl_intr_scale,
'expl_extr_scale': args.expl_extr_scale,
'expl_every': args.expl_every,
'discount': 0.99,
'wandb.name': f"Plan2Explore_cl_{tag}" if args.cl else f"Plan2Explore_single-env={args.env}_{tag}",
}).parse_flags()
wandb.init(
config=config,
reinit=True,
resume=False,
sync_tensorboard=True,
dir=args.wandb_dir,
**config.wandb,
)
if config.cl:
env_names = [
'MiniGrid-DoorKey-9x9-v0',
'MiniGrid-LavaCrossingS9N1-v0',
'MiniGrid-SimpleCrossingS9N1-v0',
]
envs = []
for i in range(config.num_tasks):
name = env_names[i]
env = gym.make(name)
env = RGBImgPartialObsWrapper(env) # Get rid of the 'mission' field
if args.state_bonus:
assert not args.plan2explore, "state bonus versus plan2explore experiment"
env = StateBonus(env)
#env = ReseedWrapper(env, [config.env_seeds[i]])
envs.append(env)
if args.eval_skills:
env_names = [
'MiniGrid-DoorKey-9x9-v0',
'MiniGrid-LavaCrossingS9N1-v0',
'MiniGrid-SimpleCrossingS9N1-v0',
'MiniGrid-MultiSkill-N2-v0',
]
eval_envs = []
for i in range(len(env_names)):
name = env_names[i]
env = gym.make(name)
env = RGBImgPartialObsWrapper(env) # Get rid of the 'mission' field
# env = ReseedWrapper(env, [config.env_seeds[i]])
eval_envs.append(env)
else:
eval_envs = []
for i in range(config.num_tasks):
name = env_names[i]
env = gym.make(name)
env = RGBImgPartialObsWrapper(env) # Get rid of the 'mission' field
eval_envs.append(env)
dv2.cl_train_loop(envs, config, eval_envs=eval_envs)
else:
env_names = [
'MiniGrid-DoorKey-9x9-v0',
'MiniGrid-LavaCrossingS9N1-v0',
'MiniGrid-SimpleCrossingS9N1-v0',
]
name = env_names[args.env]
env = gym.make(name)
env = RGBImgPartialObsWrapper(env)
dv2.train(env, config)
if args.del_exp_replay:
shutil.rmtree(os.path.join(config['logdir'], 'train_episodes'))
wandb.finish()
if __name__ == "__main__":
args = parse_minigrid_args()
run_minigrid(args)