-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathLMT_PFE_OFX.dctl
executable file
·457 lines (416 loc) · 17.8 KB
/
LMT_PFE_OFX.dctl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// LMT Print Film Emulation OFX DCTL
// Input is ACEScct
// Output is ACEScct
DEFINE_UI_PARAMS(EXPOSURE, Exposure, DCTLUI_SLIDER_FLOAT, 0, -6, 6, 0.001)
DEFINE_UI_PARAMS(SCALEC, Scale Color, DCTLUI_SLIDER_FLOAT, 0.7, 0, 2, 0.001)
DEFINE_UI_PARAMS(SLOPEGLOBAL, Slope, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(SLOPER, Slope R, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(SLOPEG, Slope G, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(SLOPEB, Slope B, DCTLUI_SLIDER_FLOAT, 0.4, 0, 2, 0.001)
DEFINE_UI_PARAMS(OFFSETGLOBAL, Offset, DCTLUI_SLIDER_FLOAT, 0, -1, 1, 0.001)
DEFINE_UI_PARAMS(OFFSETR, Offset R, DCTLUI_SLIDER_FLOAT, 0, -1, 1, 0.001)
DEFINE_UI_PARAMS(OFFSETG, Offset G, DCTLUI_SLIDER_FLOAT, 0, -1, 1, 0.001)
DEFINE_UI_PARAMS(OFFSETB, Offset B, DCTLUI_SLIDER_FLOAT, 0.2, -1, 1, 0.001)
DEFINE_UI_PARAMS(POWERGLOBAL, Power, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(POWERR, Power R, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(POWERG, Power G, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(POWERB, Power B, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(SATT, Sat, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(GAMMA1, Contrast, DCTLUI_SLIDER_FLOAT, 1.5, 0, 2, 0.001)
DEFINE_UI_PARAMS(GAMMA2, Pivot, DCTLUI_SLIDER_FLOAT, 0.18, 0, 1, 0.001)
DEFINE_UI_PARAMS(ROTATEH11, Hue1, DCTLUI_SLIDER_FLOAT, 0, 0, 360, 0.001)
DEFINE_UI_PARAMS(ROTATEH12, Range1, DCTLUI_SLIDER_FLOAT, 30, 0, 180, 0.001)
DEFINE_UI_PARAMS(ROTATEH13, Rotate1, DCTLUI_SLIDER_FLOAT, 5, -90, 90, 0.001)
DEFINE_UI_PARAMS(ROTATEH21, Hue2, DCTLUI_SLIDER_FLOAT, 80, 0, 360, 0.001)
DEFINE_UI_PARAMS(ROTATEH22, Range2, DCTLUI_SLIDER_FLOAT, 60, 0, 180, 0.001)
DEFINE_UI_PARAMS(ROTATEH23, Rotate2, DCTLUI_SLIDER_FLOAT, -15, -90, 90, 0.001)
DEFINE_UI_PARAMS(ROTATEH31, Hue3, DCTLUI_SLIDER_FLOAT, 52, 0, 360, 0.001)
DEFINE_UI_PARAMS(ROTATEH32, Range3, DCTLUI_SLIDER_FLOAT, 50, 0, 180, 0.001)
DEFINE_UI_PARAMS(ROTATEH33, Rotate3, DCTLUI_SLIDER_FLOAT, -14, -90, 90, 0.001)
DEFINE_UI_PARAMS(SCALECH11, Scale Color Hue1, DCTLUI_SLIDER_FLOAT, 45, 0, 360, 0.001)
DEFINE_UI_PARAMS(SCALECH12, Scale Color Range1, DCTLUI_SLIDER_FLOAT, 40, 0, 180, 0.001)
DEFINE_UI_PARAMS(SCALECH13, Scale Color1, DCTLUI_SLIDER_FLOAT, 1.4, 0, 2, 0.001)
DEFINE_UI_PARAMS(ROTATEH41, Hue4, DCTLUI_SLIDER_FLOAT, 190, 0, 360, 0.001)
DEFINE_UI_PARAMS(ROTATEH42, Range4, DCTLUI_SLIDER_FLOAT, 40, 0, 180, 0.001)
DEFINE_UI_PARAMS(ROTATEH43, Rotate4, DCTLUI_SLIDER_FLOAT, 30, -90, 90, 0.001)
DEFINE_UI_PARAMS(SCALECH21, Scale Color Hue2, DCTLUI_SLIDER_FLOAT, 240, 0, 360, 0.001)
DEFINE_UI_PARAMS(SCALECH22, Scale Color Range2, DCTLUI_SLIDER_FLOAT, 120, 0, 180, 0.001)
DEFINE_UI_PARAMS(SCALECH23, Scale Color2, DCTLUI_SLIDER_FLOAT, 1.4, 0, 2, 0.001)
DEFINE_UI_PARAMS(INTENSITY, Grain Intensity, DCTLUI_SLIDER_FLOAT, 1, 0, 2, 0.001)
DEFINE_UI_PARAMS(TIME, Animate Grain, DCTLUI_SLIDER_FLOAT, 0, 0, 100, 0.001)
DEFINE_UI_PARAMS(NOISE, Resolution, DCTLUI_SLIDER_INT, 10, 1, 20, 1)
DEFINE_UI_PARAMS(ACESCCT, ACEScct, DCTLUI_CHECK_BOX, 1)
DEFINE_UI_PARAMS(BYPASS, Disable Hue Adjustments, DCTLUI_CHECK_BOX, 0)
DEFINE_UI_PARAMS(ADD_GRAIN, Add Grain, DCTLUI_CHECK_BOX, 0)
DEFINE_UI_PARAMS(RGB_GRAIN, RGB Grain, DCTLUI_CHECK_BOX, 0)
typedef struct {
float3 c0, c1, c2;
} mat3;
__CONSTANT__ float pie = 3.14159265358979323f;
__CONSTANT__ mat3 RGB_2_YAB_MAT = {{0.333333f, 0.5f, 0.0f},
{0.333333f, -0.25f, 0.433013f}, {0.333333f, -0.25f, -0.433013f}};
__CONSTANT__ mat3 YAB_2_RGB_MAT = {{1.0f, 1.0f, 1.0f},
{1.333333f, -0.666666f, -0.666666f}, {0.0f, 1.154701f, -1.154701f}};
__CONSTANT__ mat3 AP0_2_AP1_MAT = {{1.4514393161f, -0.0765537734f, 0.0083161484f},
{-0.2365107469f, 1.1762296998f, -0.0060324498f}, {-0.2149285693f, -0.0996759264f, 0.9977163014f}};
__CONSTANT__ mat3 AP1_2_AP0_MAT = {{0.6954522414f, 0.0447945634f, -0.0055258826f},
{0.1406786965f, 0.8596711185f, 0.0040252103f}, {0.1638690622f, 0.0955343182f, 1.0015006723f}};
__DEVICE__ mat3 make_mat3(float3 A, float3 B, float3 C);
__DEVICE__ float fract_f(float A);
__DEVICE__ float2 add_f2_f(float2 A, float B);
__DEVICE__ float dot_f2_f2(float2 A, float2 B);
__DEVICE__ float3 max_f3_f(float3 in, float Max);
__DEVICE__ float3 clamp_f3(float3 in, float Min, float Max);
__DEVICE__ float3 mult_f3_f33(float3 X, mat3 A);
__DEVICE__ float ACEScc_to_lin(float in);
__DEVICE__ float lin_to_ACEScc(float in);
__DEVICE__ float3 ACEScc_to_ACES(float3 ACEScc);
__DEVICE__ float3 ACES_to_ACEScc(float3 ACES);
__DEVICE__ float ACEScct_to_lin(float in);
__DEVICE__ float lin_to_ACEScct(float in);
__DEVICE__ float3 ACEScct_to_ACES(float3 in);
__DEVICE__ float3 ACES_to_ACEScct(float3 in);
__DEVICE__ float3 ASCCDL_inACEScct(float3 acesIn, float3 SLOPE, float3 OFFSET, float3 POWER, float SAT);
__DEVICE__ float3 exposure(float3 A, float scale);
__DEVICE__ float3 ych_2_rgb(float3 ych);
__DEVICE__ float3 rgb_2_ych(float3 rgb);
__DEVICE__ float3 ych_2_yab(float3 ych );
__DEVICE__ float3 yab_2_ych(float3 yab);
__DEVICE__ float3 yab_2_rgb(float3 yab);
__DEVICE__ float3 rgb_2_yab(float3 rgb);
__DEVICE__ float cubic_basis_shaper(float x, float w);
__DEVICE__ float interpolate1D (float2 table[], int Size, float p);
__DEVICE__ float3 gamma_adjust_linear(float3 rgbIn, float GAMMA, float PIVOT);
__DEVICE__ float center_hue(float hue, float centerH);
__DEVICE__ float uncenter_hue(float hueCentered, float centerH);
__DEVICE__ float3 scale_C(float3 rgb, float percentC);
__DEVICE__ float3 rotate_H_in_H(float3 rgb, float centerH, float widthH, float degreesShift);
__DEVICE__ float3 scale_C_at_H(float3 rgb, float centerH, float widthH, float percentC);
__DEVICE__ float intensity(float grain, float contrast);
__DEVICE__ float nrand(float2 n);
__DEVICE__ float Noise(float input, float2 uv, int size, float intensity);
__DEVICE__ float3 overlay_f3(float3 a, float3 b);
#if (__RESOLVE_VER_MAJOR__ < 17)
__DEVICE__ float _floorf( float A) {
return (float)_floor(A);
}
#endif
__DEVICE__ float fract_f( float A) {
float B;
B = A - _floorf(A);
return B;
}
__DEVICE__ float2 add_f2_f( float2 A, float B) {
float2 C;
C.x = A.x + B; C.y = A.y + B;
return C;
}
__DEVICE__ float dot_f2_f2( float2 A, float2 B) {
float C = A.x * B.x + A.y * B.y;
return C;
}
__DEVICE__ float3 clamp_f3( float3 in, float Min, float Max) {
float3 out;
out.x = _clampf(in.x, Min, Max); out.y = _clampf(in.y, Min, Max); out.z = _clampf(in.z, Min, Max);
return out;
}
__DEVICE__ float3 max_f3_f( float3 in, float Max) {
float3 out;
out.x = _fmaxf(in.x, Max); out.y = _fmaxf(in.y, Max); out.z = _fmaxf(in.z, Max);
return out;
}
__DEVICE__ mat3 make_mat3( float3 A, float3 B, float3 C) {
mat3 D;
D.c0 = A; D.c1 = B; D.c2 = C;
return D;
}
__DEVICE__ float3 mult_f3_f33( float3 X, mat3 A) {
float r[3];
float x[3] = {X.x, X.y, X.z};
float a[3][3] = {{A.c0.x, A.c0.y, A.c0.z}, {A.c1.x, A.c1.y, A.c1.z}, {A.c2.x, A.c2.y, A.c2.z}};
for( int i = 0; i < 3; ++i){
r[i] = 0.0f;
for( int j = 0; j < 3; ++j){
r[i] = r[i] + x[j] * a[j][i];
}}
return make_float3(r[0], r[1], r[2]);
}
__DEVICE__ float ACEScc_to_lin( float in) {
if (in < -0.3013698630f)
return (_powf( 2.0f, in * 17.52f - 9.72f) - _powf( 2.0f, -16.0f)) * 2.0f;
else
return _powf( 2.0f, in * 17.52f - 9.72f);
}
__DEVICE__ float lin_to_ACEScc( float in) {
if (in <= 0.0f)
return -0.3584474886f;
else if (in < _powf(2.0f, -15.0f))
return (_log2f( _powf(2.0f, -16.0f) + in * 0.5f) + 9.72f) / 17.52f;
else
return (_log2f(in) + 9.72f) / 17.52f;
}
__DEVICE__ float3 ACEScc_to_ACES( float3 ACEScc) {
float3 lin_AP1;
lin_AP1.x = ACEScc_to_lin(ACEScc.x); lin_AP1.y = ACEScc_to_lin(ACEScc.y); lin_AP1.z = ACEScc_to_lin(ACEScc.z);
float3 ACES = mult_f3_f33(lin_AP1, AP1_2_AP0_MAT);
return ACES;
}
__DEVICE__ float3 ACES_to_ACEScc( float3 ACES) {
ACES = max_f3_f( ACES, 0.0f);
float3 lin_AP1 = mult_f3_f33( ACES, AP0_2_AP1_MAT);
float3 out;
out.x = lin_to_ACEScc(lin_AP1.x); out.y = lin_to_ACEScc(lin_AP1.y); out.z = lin_to_ACEScc(lin_AP1.z);
return out;
}
__DEVICE__ float ACEScct_to_lin( float in) {
float Y_BRK = 0.155251141552511f;
float A = 10.5402377416545f;
float B = 0.0729055341958355f;
if (in > Y_BRK)
return _powf( 2.0f, in * 17.52f - 9.72f);
else
return (in - B) / A;
}
__DEVICE__ float lin_to_ACEScct( float in) {
float X_BRK = 0.0078125f;
float A = 10.5402377416545f;
float B = 0.0729055341958355f;
if (in <= X_BRK)
return A * in + B;
else
return (_log2f(in) + 9.72f) / 17.52f;
}
__DEVICE__ float3 ACEScct_to_ACES( float3 in) {
float3 ap1_lin;
ap1_lin.x = ACEScct_to_lin( in.x); ap1_lin.y = ACEScct_to_lin( in.y); ap1_lin.z = ACEScct_to_lin( in.z);
return mult_f3_f33( ap1_lin, AP1_2_AP0_MAT);
}
__DEVICE__ float3 ACES_to_ACEScct( float3 in) {
float3 ap1_lin = mult_f3_f33(in, AP0_2_AP1_MAT);
float3 acescct;
acescct.x = lin_to_ACEScct(ap1_lin.x); acescct.y = lin_to_ACEScct(ap1_lin.y); acescct.z = lin_to_ACEScct(ap1_lin.z);
return acescct;
}
__DEVICE__ float3 ASCCDL_inACEScct( float3 acesIn, float3 SLOPE, float3 OFFSET, float3 POWER, float SAT) {
float3 acescct = ACES_to_ACEScct(acesIn);
acescct.x = _powf( _clampf( (acescct.x * SLOPE.x) + OFFSET.x, 0.0f, 1.0f), 1.0f / POWER.x);
acescct.y = _powf( _clampf( (acescct.y * SLOPE.y) + OFFSET.y, 0.0f, 1.0f), 1.0f / POWER.y);
acescct.z = _powf( _clampf( (acescct.z * SLOPE.z) + OFFSET.z, 0.0f, 1.0f), 1.0f / POWER.z);
float luma = 0.2126f * acescct.x + 0.7152f * acescct.y + 0.0722f * acescct.z;
acescct.x = luma + SAT * (acescct.x - luma);
acescct.y = luma + SAT * (acescct.y - luma);
acescct.z = luma + SAT * (acescct.z - luma);
return ACEScct_to_ACES(acescct);
}
__DEVICE__ float3 gamma_adjust_linear( float3 rgbIn, float GAMMA, float PIVOT) {
const float SCALAR = PIVOT / _powf( PIVOT, GAMMA);
float3 rgbOut = rgbIn;
if (rgbIn.x > 0.0f) rgbOut.x = _powf( rgbIn.x, GAMMA) * SCALAR;
if (rgbIn.y > 0.0f) rgbOut.y = _powf( rgbIn.y, GAMMA) * SCALAR;
if (rgbIn.z > 0.0f) rgbOut.z = _powf( rgbIn.z, GAMMA) * SCALAR;
return rgbOut;
}
__DEVICE__ float3 rgb_2_yab( float3 rgb) {
float3 yab = mult_f3_f33( rgb, RGB_2_YAB_MAT);
return yab;
}
__DEVICE__ float3 yab_2_rgb( float3 yab) {
float3 rgb = mult_f3_f33( yab, YAB_2_RGB_MAT);
return rgb;
}
__DEVICE__ float3 yab_2_ych(float3 yab) {
float3 ych = yab;
float yo = yab.y * yab.y + yab.z * yab.z;
ych.y = _sqrtf(yo);
ych.z = _atan2f(yab.z, yab.y) * (180.0f / pie);
if (ych.z < 0.0f) ych.z += 360.0f;
return ych;
}
__DEVICE__ float3 ych_2_yab( float3 ych ) {
float3 yab;
yab.x = ych.x;
float h = ych.z * (pie / 180.0f);
yab.y = ych.y * _cosf(h);
yab.z = ych.y * _sinf(h);
return yab;
}
__DEVICE__ float3 rgb_2_ych( float3 rgb) {
return yab_2_ych(rgb_2_yab(rgb));
}
__DEVICE__ float3 ych_2_rgb( float3 ych) {
return yab_2_rgb(ych_2_yab(ych));
}
__DEVICE__ float3 exposure( float3 A, float scale) {
float3 B;
B.x = A.x * _exp2f(scale); B.y = A.y * _exp2f(scale); B.z = A.z * _exp2f(scale);
return B;
}
__DEVICE__ float cubic_basis_shaper( float x, float w) {
float M[4][4] = { {-1.0f/6.0f, 3.0f/6.0f, -3.0f/6.0f, 1.0f/6.0f}, {3.0f/6.0f, -1.0f, 3.0f/6.0f, 0.0f},
{-3.0f/6.0f, 0.0f, 3.0f/6.0f, 0.0f}, {1.0f/6.0f, 4.0f/6.0f, 1.0f/6.0f, 0.0f} };
float knots[5] = {-w/2.0f, -w/4.0f, 0.0f, w/4.0f, w/2.0f};
float y = 0.0f;
if ((x > knots[0]) && (x < knots[4])) {
float knot_coord = (x - knots[0]) * 4.0f/w;
int j = knot_coord;
float t = knot_coord - j;
float monomials[4] = { t * t * t, t * t, t, 1.0f };
if ( j == 3) {
y = monomials[0] * M[0][0] + monomials[1] * M[1][0] + monomials[2] * M[2][0] + monomials[3] * M[3][0];
} else if ( j == 2) {
y = monomials[0] * M[0][1] + monomials[1] * M[1][1] + monomials[2] * M[2][1] + monomials[3] * M[3][1];
} else if ( j == 1) {
y = monomials[0] * M[0][2] + monomials[1] * M[1][2] + monomials[2] * M[2][2] + monomials[3] * M[3][2];
} else if ( j == 0) {
y = monomials[0] * M[0][3] + monomials[1] * M[1][3] + monomials[2] * M[2][3] + monomials[3] * M[3][3];
} else {
y = 0.0f;
}}
return y * 3.0f/2.0f;
}
__DEVICE__ float center_hue( float hue, float centerH) {
float hueCentered = hue - centerH;
if (hueCentered < -180.0f) hueCentered = hueCentered + 360.0f;
else if (hueCentered > 180.0f) hueCentered = hueCentered - 360.0f;
return hueCentered;
}
__DEVICE__ float uncenter_hue( float hueCentered, float centerH) {
float hue = hueCentered + centerH;
if (hue < 0.0f) hue = hue + 360.0f;
else if (hue > 360.0f) hue = hue - 360.0f;
return hue;
}
__DEVICE__ float interpolate1D (float2 table[], int Size, float p) {
if( p <= table[0].x ) return table[0].y;
if( p >= table[Size-1].x ) return table[Size-1].y;
for( int i = 0; i < Size - 1; ++i ){
if( table[i].x <= p && p < table[i+1].x ){
float s = (p - table[i].x) / (table[i+1].x - table[i].x);
return table[i].y * ( 1 - s ) + table[i+1].y * s;
}}
return 0.0f;
}
__DEVICE__ float3 scale_C_at_H( float3 rgb, float centerH, float widthH, float percentC) {
float3 new_rgb = rgb;
float3 ych = rgb_2_ych(rgb);
if (ych.y > 0.0f) {
float centeredHue = center_hue(ych.z, centerH);
float f_H = cubic_basis_shaper(centeredHue, widthH);
if (f_H > 0.0f) {
float3 new_ych = ych;
new_ych.y = ych.y * (f_H * (percentC - 1.0f) + 1.0f);
new_rgb = ych_2_rgb( new_ych);
} else {
new_rgb = rgb;
}}
return new_rgb;
}
__DEVICE__ float3 rotate_H_in_H( float3 rgb, float centerH, float widthH, float degreesShift) {
float3 ych = rgb_2_ych( rgb);
float3 new_ych = ych;
float centeredHue = center_hue( ych.z, centerH);
float f_H = cubic_basis_shaper( centeredHue, widthH);
float old_hue = centeredHue;
float new_hue = centeredHue + degreesShift;
float2 table[2] = { {0.0f, old_hue}, {1.0f, new_hue} };
float blended_hue = interpolate1D( table, 2, f_H);
if (f_H > 0.0f) new_ych.z = uncenter_hue( blended_hue, centerH);
return ych_2_rgb( new_ych);
}
__DEVICE__ float3 scale_C( float3 rgb, float percentC) {
float3 ych = rgb_2_ych(rgb);
ych.y = ych.y * percentC;
return ych_2_rgb(ych);
}
__DEVICE__ float nrand( float2 n) {
return fract_f( _sinf( dot_f2_f2( n, make_float2(12.9898f, 78.233f) ) ) * 43758.5453f);
}
__DEVICE__ float Noise( float input, float2 uv, int size, float intensity) {
float t = fract_f(input);
float nrnd[20];
nrnd[0] = nrand( add_f2_f(uv, 0.07f * t) ); nrnd[1] = nrand( add_f2_f(uv, 0.11f * t) );
nrnd[2] = nrand( add_f2_f(uv, 0.13f * t) ); nrnd[3] = nrand( add_f2_f(uv, 0.17f * t) );
nrnd[4] = nrand( add_f2_f(uv, 0.19f * t) ); nrnd[5] = nrand( add_f2_f(uv, 0.23f * t) );
nrnd[6] = nrand( add_f2_f(uv, 0.29f * t) ); nrnd[7] = nrand( add_f2_f(uv, 0.31f * t) );
nrnd[8] = nrand( add_f2_f(uv, 0.37f * t) ); nrnd[9] = nrand( add_f2_f(uv, 0.41f * t) );
nrnd[10] = nrand( add_f2_f(uv, 0.43f * t) ); nrnd[11] = nrand( add_f2_f(uv, 0.47f * t) );
nrnd[12] = nrand( add_f2_f(uv, 0.53f * t) ); nrnd[13] = nrand( add_f2_f(uv, 0.59f * t) );
nrnd[14] = nrand( add_f2_f(uv, 0.61f * t) ); nrnd[15] = nrand( add_f2_f(uv, 0.67f * t) );
nrnd[16] = nrand( add_f2_f(uv, 0.71f * t) ); nrnd[17] = nrand( add_f2_f(uv, 0.73f * t) );
nrnd[18] = nrand( add_f2_f(uv, 0.79f * t) ); nrnd[19] = nrand( add_f2_f(uv, 0.83f * t) );
float noise = 0.0f;
for(int N = 0; N < size; N++){
noise += nrnd[N];
}
noise /= (float)size;
noise = (noise - 0.5f) * intensity + 0.5f;
return noise;
}
__DEVICE__ float3 overlay_f3( float3 a, float3 b) {
const float LUMA_CUT = lin_to_ACEScct(0.5f);
float luma = a.x * 0.2722287168f + a.y * 0.6740817658f + a.z * 0.0536895174f;
float3 out;
if (luma < LUMA_CUT) {
out.x = 2.0f * a.x * b.x; out.y = 2.0f * a.y * b.y; out.z = 2.0f * a.z * b.z;
} else {
out.x = 1.0f - (2.0f * (1.0f - a.x) * (1.0f - b.x));
out.y = 1.0f - (2.0f * (1.0f - a.y) * (1.0f - b.y));
out.z = 1.0f - (2.0f * (1.0f - a.z) * (1.0f - b.z));
}
return out;
}
__DEVICE__ float3 transform(int p_Width, int p_Height, int p_X, int p_Y, float p_R, float p_G, float p_B)
{
float3 aces = make_float3(p_R, p_G, p_B);
bool ON = EXPOSURE != 0.0f || SCALEC != 1.0f || SLOPEGLOBAL != 1.0f || SLOPER != 1.0f || SLOPEG != 1.0f || SLOPEB != 1.0f || OFFSETGLOBAL != 0.0f ||
OFFSETR != 0.0f || OFFSETG != 0.0f || OFFSETB != 0.0f || POWERGLOBAL != 1.0f || POWERR != 1.0f || POWERG != 1.0f || POWERB != 1.0f ||
GAMMA1 != 1.0f || ROTATEH13 != 0.0f || ROTATEH23 != 0.0f || ROTATEH33 != 0.0f || SCALECH13 != 1.0f || ROTATEH43 != 0.0f || SCALECH23 != 1.0f;
if(ON){
aces = ACESCCT ? ACEScct_to_ACES(aces) : ACEScc_to_ACES(aces);
if(EXPOSURE != 0.0f) aces = exposure(aces, EXPOSURE);
if(SCALEC != 1.0f) aces = scale_C( aces, SCALEC);
float SlopeR = 1.0f + (SLOPER + SLOPEGLOBAL - 2.0f) / 10.0f;
float SlopeG = 1.0f + (SLOPEG + SLOPEGLOBAL - 2.0f) / 10.0f;
float SlopeB = 1.0f + (SLOPEB + SLOPEGLOBAL - 2.0f) / 10.0f;
float OffsetR = (OFFSETR + OFFSETGLOBAL) / 10.0f;
float OffsetG = (OFFSETG + OFFSETGLOBAL) / 10.0f;
float OffsetB = (OFFSETB + OFFSETGLOBAL) / 10.0f;
float PowerR = 1.0f + (POWERR + POWERGLOBAL - 2.0f) / 10.0f;
float PowerG = 1.0f + (POWERG + POWERGLOBAL - 2.0f) / 10.0f;
float PowerB = 1.0f + (POWERB + POWERGLOBAL - 2.0f) / 10.0f;
float3 SLOPE = make_float3(SlopeR, SlopeG, SlopeB);
float3 OFFSET = make_float3(OffsetR, OffsetG, OffsetB);
float3 POWER = make_float3(PowerR, PowerG, PowerB);
aces = ASCCDL_inACEScct(aces, SLOPE, OFFSET, POWER, SATT);
if(GAMMA1 != 1.0f) aces = gamma_adjust_linear(aces, GAMMA1, GAMMA2);
if(!BYPASS){
if(ROTATEH13 != 0.0f) aces = rotate_H_in_H(aces, ROTATEH11, ROTATEH12, ROTATEH13);
if(ROTATEH23 != 0.0f) aces = rotate_H_in_H(aces, ROTATEH21, ROTATEH22, ROTATEH23);
if(ROTATEH33 != 0.0f) aces = rotate_H_in_H(aces, ROTATEH31, ROTATEH32, ROTATEH33);
if(SCALECH13 != 1.0f) aces = scale_C_at_H(aces, SCALECH11, SCALECH12, SCALECH13);
if(ROTATEH43 != 0.0f) aces = rotate_H_in_H(aces, ROTATEH41, ROTATEH42, ROTATEH43);
if(SCALECH23 != 1.0f) aces = scale_C_at_H(aces, SCALECH21, SCALECH22, SCALECH23);
}
aces = ACESCCT ? ACES_to_ACEScct(aces) : ACES_to_ACEScc(aces);
}
if(ADD_GRAIN){
float2 uv;
uv.x = (float)p_X / p_Width;
uv.y = (float)p_Y / p_Height;
TIME += 1.0f;
INTENSITY /= 10.0f;
float3 grain;
if(!RGB_GRAIN){
float input = aces.x * 0.2722287168f + aces.y * 0.6740817658f + aces.z * 0.0536895174f * TIME;
float noise = Noise(input, uv, NOISE, INTENSITY);
grain = make_float3(noise, noise, noise);
} else {
float noiseR = Noise(aces.x * TIME, uv, NOISE, INTENSITY);
float noiseG = Noise(aces.y * TIME, uv, NOISE, INTENSITY);
float noiseB = Noise(aces.z * TIME, uv, NOISE, INTENSITY);
grain = make_float3(noiseR, noiseG, noiseB);
}
aces = overlay_f3(aces, grain);
}
return aces;
}