diff --git a/Project.toml b/Project.toml index 8df78a76..ab05d0a1 100644 --- a/Project.toml +++ b/Project.toml @@ -65,8 +65,9 @@ JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b" MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" Optim = "429524aa-4258-5aef-a3af-852621145aeb" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +PositiveFactorizations = "85a6dd25-e78a-55b7-8502-1745935b8125" SeeToDee = "1c904df7-48cd-41e7-921b-d889ed9a470c" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["ControlSystemsBase", "Distributions", "JET", "MonteCarloMeasurements", "Optim", "Test", "Plots", "SeeToDee"] +test = ["ControlSystemsBase", "Distributions", "JET", "MonteCarloMeasurements", "Optim", "Test", "PositiveFactorizations", "Plots", "SeeToDee"] diff --git a/examples/example_quadtank.jl b/examples/example_quadtank.jl index 16311f4f..cfd106b5 100644 --- a/examples/example_quadtank.jl +++ b/examples/example_quadtank.jl @@ -61,7 +61,7 @@ function quadtank_params(h,u,p,t) ssqrt(x) = √(max(x, zero(x)) + 1e-3) # For numerical robustness at x = 0 - xd = SA[ + SA[ -a1/A1 * ssqrt(2g*h[1]) + a3/A1*ssqrt(2g*h[3]) + γ1*k1/A1 * u[1] -a2/A2 * ssqrt(2g*h[2]) + a4/A2*ssqrt(2g*h[4]) + γ2*k2/A2 * u[2] -a3/A3*ssqrt(2g*h[3]) + (1-γ2)*k2/A3 * u[2] diff --git a/src/ekf.jl b/src/ekf.jl index f375071f..cc681ce6 100644 --- a/src/ekf.jl +++ b/src/ekf.jl @@ -49,7 +49,7 @@ function ExtendedKalmanFilter(dynamics, measurement_model::AbstractMeasurementMo end function ExtendedKalmanFilter(dynamics, measurement, R1,R2,d0=SimpleMvNormal(Matrix(R1)); nu::Int, ny=size(R2,1), Cjac = nothing, kwargs...) - IPM = has_ip(measurement) + IPM = !has_oop(measurement) T = promote_type(eltype(R1), eltype(R2), eltype(d0)) nx = size(R1,1) measurement_model = EKFMeasurementModel{T, IPM}(measurement, R2; nx, ny, Cjac) @@ -58,7 +58,7 @@ end function ExtendedKalmanFilter(kf, dynamics, measurement; Ajac = nothing, Cjac = nothing) - IPD = has_ip(dynamics) + IPD = !has_oop(dynamics) if measurement isa AbstractMeasurementModel measurement_model = measurement IPM = isinplace(measurement_model) diff --git a/src/kalman.jl b/src/kalman.jl index 73459aea..47baa873 100644 --- a/src/kalman.jl +++ b/src/kalman.jl @@ -120,7 +120,13 @@ end function (kfm::MeasurementOop)(x,u,p,t) kf = kfm.kf mfun = measurement(kf) - if kf isa UnscentedKalmanFilter{<:Any,true} || kf isa ExtendedKalmanFilter{<:Any,true} + if kf isa UnscentedKalmanFilter{<:Any,true, <:Any, true} # augmented inplace + y = zeros(kf.ny) + mfun(y,x,u,p,t,0) + return y + elseif kf isa UnscentedKalmanFilter{<:Any,false, <:Any, true} # augmented oop + return mfun(x,u,p,t,0) + elseif kf isa UnscentedKalmanFilter{<:Any,true} || kf isa ExtendedKalmanFilter{<:Any,true} y = zeros(kf.ny) mfun(y,x,u,p,t) return y diff --git a/src/measurement_model.jl b/src/measurement_model.jl index 148db146..46b52aea 100644 --- a/src/measurement_model.jl +++ b/src/measurement_model.jl @@ -31,6 +31,7 @@ function CompositeMeasurementModel(m1, rest...) end isinplace(model::CompositeMeasurementModel) = isinplace(model.models[1]) +has_oop(model::CompositeMeasurementModel) = has_oop(model.models[1]) function measurement(model::CompositeMeasurementModel) function (x,u,p,t) @@ -84,6 +85,7 @@ struct UKFMeasurementModel{IPM,AUGM,MT,RT,IT,MET,CT,CCT,CAT} <: AbstractMeasurem end isinplace(::UKFMeasurementModel{IPM}) where IPM = IPM +has_oop(::UKFMeasurementModel{IPM}) where IPM = !IPM """ UKFMeasurementModel{inplace_measurement,augmented_measurement}(measurement, R2, ny, ne, innovation, mean, cov, cross_cov, cache = nothing) @@ -241,6 +243,7 @@ struct EKFMeasurementModel{IPM,MT,RT,CJ,CAT} <: AbstractMeasurementModel end isinplace(::EKFMeasurementModel{IPM}) where IPM = IPM +has_oop(::EKFMeasurementModel{IPM}) where IPM = !IPM """ EKFMeasurementModel{IPM}(measurement, R2, ny, Cjac, cache = nothing) diff --git a/src/ukf.jl b/src/ukf.jl index fe5579af..60d3b437 100644 --- a/src/ukf.jl +++ b/src/ukf.jl @@ -3,7 +3,7 @@ Return a vector of (2n+1) static vectors, where `n` is the length of `m`, representing sigma points with mean `m` and covariance `Σ`. """ -@inline function sigmapoints(m, Σ; static = true) +@inline function sigmapoints(m, Σ; static = true, cholesky! = cholesky!) T = promote_type(eltype(m), eltype(Σ)) n = max(length(m), size(Σ,1)) if static @@ -11,10 +11,10 @@ Return a vector of (2n+1) static vectors, where `n` is the length of `m`, repres else xs = [zeros(T, n) for _ in 1:(2n+1)] end - sigmapoints!(xs,m,Σ) + sigmapoints!(xs,m,Σ,cholesky!) end -function sigmapoints!(xs, m, Σ::AbstractMatrix) +function sigmapoints!(xs, m, Σ::AbstractMatrix, cholesky! = cholesky!) n = length(xs[1]) @assert n == length(m) # X = sqrt(Symmetric(n*Σ)) # 2.184 μs (16 allocations: 2.27 KiB) @@ -32,7 +32,7 @@ end abstract type AbstractUnscentedKalmanFilter <: AbstractKalmanFilter end -mutable struct UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM,DT,MT,R1T,D0T,SPC,XT,RT,P,RJ,SMT,SCT} <: AbstractUnscentedKalmanFilter +mutable struct UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM,DT,MT,R1T,D0T,SPC,XT,RT,P,RJ,SMT,SCT,CH} <: AbstractUnscentedKalmanFilter dynamics::DT measurement_model::MT R1::R1T @@ -48,6 +48,7 @@ mutable struct UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM,DT,MT,R1T,D0T,SPC,XT,RT,P reject::RJ state_mean::SMT state_cov::SCT + cholesky!::CH end function Base.getproperty(ukf::UnscentedKalmanFilter, s::Symbol) @@ -68,6 +69,7 @@ end """ UnscentedKalmanFilter(dynamics, measurement, R1, R2, d0=MvNormal(Matrix(R1)); p = NullParameters(), ny, nu) + UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model::AbstractMeasurementModel, R1, d0=SimpleMvNormal(R1); p=NullParameters(), nu) A nonlinear state estimator propagating uncertainty using the unscented transform. @@ -106,7 +108,7 @@ is used, where the Boolean type parameters have the following meaning - `inplace_dynamics`: If `true`, the dynamics function operates in-place, i.e., it modifies the first argument in `dynamics(dx, x, u, p, t)`. Default is `false`. - `inplace_measurement`: If `true`, the measurement function operates in-place, i.e., it modifies the first argument in `measurement(y, x, u, p, t)`. Default is `false`. - `augmented_dynamics`: If `true` the dynamics function is augmented with an additional noise input `w`, i.e., `dynamics(x, u, p, t, w)`. Default is `false`. -- `augmented_measurement`: If `true` the measurement function is agumented with an additional noise input `e`, i.e., `measurement(x, u, p, t, e)`. Default is `false`. +- `augmented_measurement`: If `true` the measurement function is agumented with an additional noise input `e`, i.e., `measurement(x, u, p, t, e)`. Default is `false`. (If the measurement noise has fewer degrees of freedom than the number of measurements, you may failure in Cholesky factorizations, see "Custom Cholesky factorization" below). Use of augmented dynamics incurs extra computational cost. The number of sigma points used is `2L+1` where `L` is the length of the augmented state vector. Without augmentation, `L = nx`, with augmentation `L = nx + nw` and `L = nx + ne` for dynamics and measurement, respectively. @@ -124,12 +126,24 @@ By passing and explicitly created [`UKFMeasurementModel`](@ref), one may provide - `state_cov(xs::AbstractVector{<:AbstractVector}, m = mean(xs))` where the first argument represent state sigma points and the second argument, which must be optional, represents the mean of those points. The function should return the covariance matrix of the state sigma points. See [`UKFMeasurementModel`](@ref) for more details on how to set up a custom measurement model. Pass the custom measurement model as the second argument to the UKF constructor. + +# Custom Cholesky factorization +The UnscentedKalmanFilter supports providing a custom function to compute the Cholesky factorization of the covariance matrices for use in sigma-point generation. + +If either of the following conditions are met, you may experience failure in internal Cholesky factorizations: +- The dynamics noise or measurement noise covariance matrices (``R_1, R_2``) are singular +- The measurement is augmented and the measurement noise has fewer degrees of freedom than the number of measurements +- (Under specific technical conditions) The dynamics is augmented and the dynamics noise has fewer degrees of freedom than the number of state variables. The technical conditions are easiest to understand in the linear-systems case, where it corresponds to the Riccati equation associated with the Kalman gain not having a solution. This may happen when the pair ``(A, R1)`` has uncontrollable modes on the unit circle, for example, when there are integrating modes that are not affected through the noise. + +The error message may look like +``` +ERROR: PosDefException: matrix is not positive definite; Factorization failed. +``` +In such situations, it is advicable to reconsider the noise model and covariance matrices, alternatively, you may provide a custom Cholesky factorization function to the UKF constructor through the keyword argument `cholesky!`. The function should have the signature `cholesky!(A::AbstractMatrix)::Cholesky`. A useful alternative factorizaiton when covariance matrices are expected to be singular is `cholesky! = R->cholesky!(Positive, Matrix(R))` where the "positive" Cholesky factorization is provided by the package PositiveFactorizations.jl, which must be manually installed and loaded by the user. """ -function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model::AbstractMeasurementModel, R1, d0=SimpleMvNormal(R1); Ts=1.0, p=NullParameters(), nu::Int, ny=measurement_model.ny, nw = nothing, reject=nothing, state_mean=safe_mean, state_cov=safe_cov, kwargs...) where {IPD,IPM,AUGD,AUGM} +function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model::AbstractMeasurementModel, R1, d0=SimpleMvNormal(R1); Ts=1.0, p=NullParameters(), nu::Int, ny=measurement_model.ny, nw = nothing, reject=nothing, state_mean=safe_mean, state_cov=safe_cov, cholesky! = cholesky!, kwargs...) where {IPD,IPM,AUGD,AUGM} nx = length(d0) - - T = promote_type(eltype(d0), eltype(R1)) if AUGD @@ -138,7 +152,6 @@ function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model::A elseif nw === nothing error("The number of dynamics noise variables, nw, can not be inferred from R1 when R1 is not an array, please provide the keyword argument `nw`.") end - nw == nx || error("R1 must be square with size equal to the state vector length for non-augmented dynamics") L = nx + nw else nw = 0 @@ -150,21 +163,21 @@ function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model::A R = convert_cov_type(R1, d0.Σ) x0 = convert_x0_type(d0.μ) UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM,typeof(dynamics),typeof(measurement_model),typeof(R1),typeof(d0), - typeof(predict_sigma_point_cache),typeof(x0),typeof(R),typeof(p),typeof(reject),typeof(state_mean),typeof(state_cov)}( - dynamics, measurement_model, R1, d0, predict_sigma_point_cache, x0, R, 0, Ts, ny, nu, p, reject, state_mean, state_cov) + typeof(predict_sigma_point_cache),typeof(x0),typeof(R),typeof(p),typeof(reject),typeof(state_mean),typeof(state_cov), typeof(cholesky!)}( + dynamics, measurement_model, R1, d0, predict_sigma_point_cache, x0, R, 0, Ts, ny, nu, p, reject, state_mean, state_cov, cholesky!) end -function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement, R1, R2, d0=SimpleMvNormal(R1), args...; Ts = 1.0, p = NullParameters(), ny, nu, kwargs...) where {IPD,IPM,AUGD,AUGM} +function UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement, R1, R2, d0=SimpleMvNormal(R1), args...; Ts = 1.0, p = NullParameters(), ny, nu, cholesky! = cholesky!, kwargs...) where {IPD,IPM,AUGD,AUGM} nx = length(d0) T = promote_type(eltype(d0), eltype(R1), eltype(R2)) measurement_model = UKFMeasurementModel{T,IPM,AUGM}(measurement, R2; nx, ny, kwargs...) - UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model, R1, d0, args...; Ts, p, nu, kwargs...) + UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics, measurement_model, R1, d0, args...; Ts, p, nu, cholesky!, kwargs...) end function UnscentedKalmanFilter(dynamics,measurement,args...; kwargs...) - IPD = has_ip(dynamics) - IPM = has_ip(measurement) + IPD = !has_oop(dynamics) + IPM = !has_oop(measurement) AUGD = false AUGM = false UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}(dynamics,measurement,args...;kwargs...) @@ -178,7 +191,7 @@ dynamics(kf::AbstractUnscentedKalmanFilter) = kf.dynamics # x(k+1) x u p t @inline has_ip(fun) = hasmethod(fun, Tuple{AbstractArray,AbstractArray,AbstractArray,AbstractArray,Real}) - +@inline has_oop(fun) = hasmethod(fun, Tuple{ AbstractArray,AbstractArray,AbstractArray,Real}) """ predict!(ukf::UnscentedKalmanFilter, u, p = parameters(ukf), t::Real = index(ukf) * ukf.Ts; R1 = get_mat(ukf.R1, ukf.x, u, p, t), reject, mean, cov, dynamics) @@ -198,12 +211,10 @@ function predict!(ukf::UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}, u, p = paramete R1 = get_mat(ukf.R1, ukf.x, u, p, t), reject = ukf.reject, mean = ukf.state_mean, cov = ukf.state_cov, dynamics = ukf.dynamics) where {IPD,IPM,AUGD,AUGM} (; dynamics,x,R) = ukf sigma_point_cache = ukf.predict_sigma_point_cache - xsd,xsd0 = sigma_point_cache.x1, sigma_point_cache.x0 + xsd = sigma_point_cache.x1 # xtyped = eltype(xsd)(x) nx = length(x) - nw = size(R1, 1) # nw may be smaller than nx for augmented dynamics xinds = 1:nx - winds = nx+1:nx+nw sigmapoints_p!(ukf, R1) propagate_sigmapoints_p!(ukf, u, p, t, R1) if reject !== nothing @@ -216,7 +227,7 @@ function predict!(ukf::UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}, u, p = paramete end if AUGD ukf.x = mean(xsd)[xinds] - @bangbang ukf.R .= symmetrize(cov(xsd)[xinds,xinds]) # TODO: optimize + @bangbang ukf.R .= symmetrize(cov([x[xinds] for x in xsd])) #+ 1e-16I # TODO: optimize else ukf.x = mean(xsd) @bangbang ukf.R .= symmetrize(cov(xsd, ukf.x)) .+ R1 @@ -225,7 +236,16 @@ function predict!(ukf::UnscentedKalmanFilter{IPD,IPM,AUGD,AUGM}, u, p = paramete end function propagate_sigmapoints_p!(ukf::UnscentedKalmanFilter{true,<:Any,true}, u, p, t, R1) - error("IPD and AUGD not yet supported") + (; dynamics, x) = ukf + sigma_point_cache = ukf.predict_sigma_point_cache + xsd,xsd0 = sigma_point_cache.x1, sigma_point_cache.x0 + nx = length(x) + nw = size(R1, 1) # nw may be smaller than nx for augmented dynamics + xinds = 1:nx + winds = nx+1:nx+nw + for i in eachindex(xsd) + dynamics(xsd[i], xsd0[i][xinds], u, p, t, xsd0[i][winds]) + end end function propagate_sigmapoints_p!(ukf::UnscentedKalmanFilter{false,<:Any,true}, u, p, t, R1) @@ -245,10 +265,6 @@ function propagate_sigmapoints_p!(ukf::UnscentedKalmanFilter{true,<:Any,false}, (; dynamics, x) = ukf sigma_point_cache = ukf.predict_sigma_point_cache xsd,xsd0 = sigma_point_cache.x1, sigma_point_cache.x0 - nx = length(x) - nw = size(R1, 1) # nw may be smaller than nx for augmented dynamics - xinds = 1:nx - winds = nx+1:nx+nw xp = similar(xsd[1]) for i in eachindex(xsd) xp .= 0 @@ -268,20 +284,16 @@ end function sigmapoints_p!(ukf::UnscentedKalmanFilter{<:Any,<:Any,true}, R1) sigma_point_cache = ukf.predict_sigma_point_cache - xsd,xsd0 = sigma_point_cache.x1, sigma_point_cache.x0 - nx = length(ukf.x) - nw = size(R1, 1) # nw may be smaller than nx for augmented dynamics - xinds = 1:nx - winds = nx+1:nx+nw + xsd0 = sigma_point_cache.x0 m = [ukf.x; 0*R1[:, 1]] Raug = cat(ukf.R, R1, dims=(1,2)) - sigmapoints!(xsd0, m, Raug) + sigmapoints!(xsd0, m, Raug, ukf.cholesky!) end function sigmapoints_p!(ukf::UnscentedKalmanFilter{<:Any,<:Any,false}, R1) sigma_point_cache = ukf.predict_sigma_point_cache - xsd,xsd0 = sigma_point_cache.x1, sigma_point_cache.x0 - sigmapoints!(xsd0, ukf.x, ukf.R) + xsd0 = sigma_point_cache.x0 + sigmapoints!(xsd0, ukf.x, ukf.R, ukf.cholesky!) end # The functions below are JET-safe from dynamic dispatch if called with static arrays @@ -358,7 +370,6 @@ function correct!( ys = sigma_point_cache.x1 (; x, R) = kf - T = promote_type(eltype(x), eltype(R), eltype(R2)) ns = length(xsm) sigmapoints_c!(kf, measurement_model, R2) # TODO: should this take other arguments? propagate_sigmapoints_c!(kf, u, p, t, R2, measurement_model) @@ -403,14 +414,14 @@ function sigmapoints_c!( sigmapoints!(xsm, xm, Raug) end -# IPM = true +# IPM = true, AUGM = false function propagate_sigmapoints_c!( kf, u, p, t, R2, - measurement_model::UKFMeasurementModel{true}, + measurement_model::UKFMeasurementModel{true, false}, ) sigma_point_cache = measurement_model.cache xsm = sigma_point_cache.x0 @@ -420,6 +431,28 @@ function propagate_sigmapoints_c!( end end +# IPM = true, AUGM = true +function propagate_sigmapoints_c!( + kf, + u, + p, + t, + R2, + measurement_model::UKFMeasurementModel{true,true}, +) + sigma_point_cache = measurement_model.cache + xsm = sigma_point_cache.x0 + ys = sigma_point_cache.x1 + x = kf.x + nx = length(x) + nv = size(R2, 1) + xinds = 1:nx + vinds = nx+1:nx+nv + for i in eachindex(xsm, ys) + measurement_model.measurement(ys[i], xsm[i][xinds], u, p, t, xsm[i][vinds]) + end +end + # AUGM = true function propagate_sigmapoints_c!( kf, @@ -432,7 +465,7 @@ function propagate_sigmapoints_c!( sigma_point_cache = measurement_model.cache xsm = sigma_point_cache.x0 ys = sigma_point_cache.x1 - (; x, R) = kf + (; x) = kf nx = length(x) nv = size(R2, 1) xinds = 1:nx @@ -536,7 +569,6 @@ function smooth(sol::KalmanFilteringSolution, kf::UnscentedKalmanFilter{IPD,IPM, RT = similar(Rt) xT[end] = xt[end] |> copy RT[end] = Rt[end] |> copy - ny = kf.ny nx = length(x[1]) xi = 1:nx xqxi = similar(xt[1]) @@ -779,3 +811,7 @@ y = h(x, z) # ll = extended_logpdf(SimpleMvNormal(PDMat(S,Sᵪ)), e) #- 1/2*logdet(S) # logdet is included in logpdf # (; ll, e, S, Sᵪ, K) # end + + +function unscentedplot end +function unscentedplot! end \ No newline at end of file diff --git a/test/test_ukf.jl b/test/test_ukf.jl index a3acc38f..96ad1e99 100644 --- a/test/test_ukf.jl +++ b/test/test_ukf.jl @@ -1,6 +1,6 @@ using LowLevelParticleFilters import LowLevelParticleFilters.resample -using Test, Random, LinearAlgebra, Statistics, StaticArrays, Distributions, Plots +using Test, Random, LinearAlgebra, Statistics, StaticArrays, Distributions, Plots, PositiveFactorizations Random.seed!(0) mvnormal(d::Int, σ::Real) = MvNormal(LinearAlgebra.Diagonal(fill(float(σ) ^ 2, d))) @@ -57,6 +57,11 @@ x,u,y = tosvec.((x,u,y)) reskf = forward_trajectory(kf, u, y) # filtered, prediction, pred resukf = forward_trajectory(ukf, u, y) +# sp = ukf.predict_sigma_point_cache +# LowLevelParticleFilters.unscentedplot(sp.x0) +# LowLevelParticleFilters.unscentedplot!(sp.x1) + + sse(x) = sum(sum.(abs2, x)) sse(x .- reskf.x) sse(x .- resukf.x) @@ -140,6 +145,71 @@ resukfv = forward_trajectory(ukfv, u, y) @test reduce(hcat, resukfv.Rt) ≈ reduce(hcat, resukf.Rt) atol=1e-6 @test resukfv.ll ≈ resukf.ll rtol=1e-6 + +## Augmented dynamics with smaller noise +Bw = @SMatrix [0.1; 1] +dynamics_ws(x,u,p,t,w) = _A*x .+ _B*u .+ Bw*w +ukfw = UnscentedKalmanFilter{false,false,true,false}(dynamics_ws, measurement, [1.0;;], R2, d0; ny, nu) +resukfw = forward_trajectory(ukfw, u, y) + +ukfw2 = UnscentedKalmanFilter{false,false,false,false}(dynamics, measurement, Bw*Bw', R2, d0; ny, nu) +resukfw2 = forward_trajectory(ukfw2, u, y) + +@test reduce(hcat, resukfw.xt) ≈ reduce(hcat, resukfw2.xt) atol=1e-6 +@test reduce(hcat, resukfw.x) ≈ reduce(hcat, resukfw2.x) atol=1e-6 +@test reduce(hcat, resukfw.R) ≈ reduce(hcat, resukfw2.R) atol=1e-6 +@test reduce(hcat, resukfw.Rt) ≈ reduce(hcat, resukfw2.Rt) atol=1e-6 + +# With small measurement noise, the covariance matrix becomes exactly singular. Not even a square-root formulation handles this since the standard Cholesky factorization cannot be computed. We handle that by using PositiveFactorizations.jl and providing a custom Cholesky factorization function. +Bv = @SMatrix [0.1; 1] +measurement_vs(x,u,p,t,v) = _C*x .+ Bv*v +ukfv = UnscentedKalmanFilter{false,false,false,true}(dynamics, measurement_vs, eye(nx), [1.0;;], d0; ny, nu, cholesky! = R->cholesky!(Positive, Matrix(R))) +resukfv = forward_trajectory(ukfv, u, y) + +ukfv2 = UnscentedKalmanFilter{false,false,false,false}(dynamics, measurement, eye(nx), Bv*Bv', d0; ny, nu, cholesky! = R->cholesky!(Positive, Matrix(R))) +resukfv2 = forward_trajectory(ukfv2, u, y) + +# Covariance matrices will occasionally have some small spikes so we soften tolerances here. +# plot(tr.(resukfv.Rt)[2:end]) +@test norm(reduce(hcat, resukfv.xt) - reduce(hcat, resukfv2.xt)) < 0.05 +@test norm(reduce(hcat, resukfv.x) - reduce(hcat, resukfv2.x)) < 0.05 +@test norm(reduce(hcat, resukfv.R) - reduce(hcat, resukfv2.R)) < 0.1 +@test norm(reduce(hcat, resukfv.Rt) - reduce(hcat, resukfv2.Rt)) < 0.05 +@test resukfv.ll ≈ resukf.ll rtol=1e-1 + +plot(resukfv, plotyht=true) # Test that plotting works with augmented measurement model + +## Augmented dynamics in place +function dynamics_ws!(xp,x,u,p,t,w) + mul!(xp, _A, x) + mul!(xp, _B, u, 1.0, 1.0) + mul!(xp, Bw, w, 1, 1) +end + +function measurement_vs!(y,x,u,p,t,v) + mul!(y, _C, x) + mul!(y, Bv, v, 1, 1) +end + +ukfw = UnscentedKalmanFilter{true,false,true,false}(dynamics_ws!, measurement, [1.0;;], R2, d0; ny, nu) +resukfw3 = forward_trajectory(ukfw, u, y) + +@test reduce(hcat, resukfw3.xt) ≈ reduce(hcat, resukfw.xt) atol=1e-6 +@test reduce(hcat, resukfw3.x) ≈ reduce(hcat, resukfw.x) atol=1e-6 +@test reduce(hcat, resukfw3.R) ≈ reduce(hcat, resukfw.R) atol=1e-6 +@test reduce(hcat, resukfw3.Rt) ≈ reduce(hcat, resukfw.Rt) atol=1e-6 +@test resukfw3.ll ≈ resukfw.ll rtol=1e-6 + +ukfv = UnscentedKalmanFilter{false,true,false,true}(dynamics, measurement_vs!, eye(nx), [1.0;;], d0; ny, nu, cholesky! = R->cholesky!(Positive, Matrix(R))) +resukfv3 = forward_trajectory(ukfv, u, y) + +@test reduce(hcat, resukfv3.xt) ≈ reduce(hcat, resukfv.xt) atol=0.05 +@test reduce(hcat, resukfv3.x) ≈ reduce(hcat, resukfv.x) atol=0.05 +@test reduce(hcat, resukfv3.R) ≈ reduce(hcat, resukfv.R) atol=0.1 +@test reduce(hcat, resukfv3.Rt) ≈ reduce(hcat, resukfv.Rt) atol=0.05 +@test resukfv3.ll ≈ resukfv.ll rtol=0.01 + + ## DAE UKF ===================================================================== # "A pendulum in DAE form" # function pend(state, f, p, t=0)