forked from mozilla/TTS
-
Notifications
You must be signed in to change notification settings - Fork 2
/
compute_statistics.py
executable file
·79 lines (65 loc) · 2.45 KB
/
compute_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import argparse
import numpy as np
from tqdm import tqdm
from TTS.datasets.preprocess import load_meta_data
from TTS.utils.io import load_config
from TTS.utils.audio import AudioProcessor
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Compute mean and variance of spectrogtram features.")
parser.add_argument("--config_path", type=str, required=True,
help="TTS config file path.")
parser.add_argument("--out_path", default=None, type=str,
help="directory to save the output file.")
args = parser.parse_args()
# load config
CONFIG = load_config(args.config_path)
CONFIG.audio['signal_norm'] = False # do not apply earlier normalization
CONFIG.audio['stats_path'] = None # discard pre-defined stats
# load audio processor
ap = AudioProcessor(**CONFIG.audio)
# load the meta data of target dataset
dataset_items = load_meta_data(CONFIG.datasets)[0] # take only train data
print(f" > There are {len(dataset_items)} files.")
mel_sum = 0
mel_square_sum = 0
linear_sum = 0
linear_square_sum = 0
N = 0
for item in tqdm(dataset_items):
# compute features
wav = ap.load_wav(item[1])
linear = ap.spectrogram(wav)
mel = ap.melspectrogram(wav)
# compute stats
N += mel.shape[1]
mel_sum += mel.sum(1)
linear_sum += linear.sum(1)
mel_square_sum += (mel ** 2).sum(axis=1)
linear_square_sum += (linear ** 2).sum(axis=1)
mel_mean = mel_sum / N
mel_scale = np.sqrt(mel_square_sum / N - mel_mean ** 2)
linear_mean = linear_sum / N
linear_scale = np.sqrt(linear_square_sum / N - linear_mean ** 2)
output_file_path = os.path.join(args.out_path, "scale_stats.npy")
stats = {}
stats['mel_mean'] = mel_mean
stats['mel_std'] = mel_scale
stats['linear_mean'] = linear_mean
stats['linear_std'] = linear_scale
# set default config values for mean-var scaling
CONFIG.audio['stats_path'] = output_file_path
CONFIG.audio['signal_norm'] = True
# remove redundant values
del CONFIG.audio['max_norm']
del CONFIG.audio['min_level_db']
del CONFIG.audio['symmetric_norm']
del CONFIG.audio['clip_norm']
stats['audio_config'] = CONFIG.audio
np.save(output_file_path, stats, allow_pickle=True)
if __name__ == "__main__":
main()