-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmodelsel.bib
436 lines (387 loc) · 15.4 KB
/
modelsel.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
@article{Merkle+Furr+Rabe-Hesketh:2018,
title={Bayesian comparison of latent variable models: {C}onditional vs marginal likelihoods},
author={Merkle, Edgar C and Furr, Daniel and Rabe-Hesketh, Sophia},
journal={arXiv preprint arXiv:1802.04452},
year={2018},
url={https://arxiv.org/abs/1802.04452}
}
@article{betancourt2017conceptual,
title={A conceptual introduction to {Hamiltonian} {Monte} {Carlo}},
author={Betancourt, Michael},
journal={arXiv preprint arXiv:1701.02434},
year={2017},
url={https://arxiv.org/abs/1701.02434}
}
@article{Gelfand+etal:1990,
title={Illustration of {Bayesian} inference in normal data models using {Gibbs} sampling},
author={Gelfand, Alan E and Hills, Susan E and Racine-Poon, Amy and Smith, Adrian FM},
journal={Journal of the American Statistical Association},
volume={85},
number={412},
pages={972--985},
year={1990}
}
@Article{Burkner+Gabry+Vehtari:LFO-CV:2019,
author = {Paul-Christian B{\"u}rkner and Jonah Gabry and Aki Vehtari},
title = {Approximate leave-future-out cross-validation for time series models},
journal = {arXiv preprint arXiv:1902.06281},
year = {2019},
url = {https://arxiv.org/abs/1902.06281}
}
@article{Burkner+Gabry+Vehtari:LFO-CV:2020,
title={Approximate leave-future-out cross-validation for {Bayesian} time series models},
author={B{\"u}rkner, Paul-Christian and Gabry, Jonah and Vehtari, Aki},
journal={Journal of Statistical Computation and
Simulation},
volume={90},
nuber={14},
pages={2499-2523},
year={2020}
}
@ARTICLE{Betancourt2013,
title = "Hamiltonian Monte Carlo for Hierarchical Models",
author = "Betancourt, M J and Girolami, Mark",
abstract = "Hierarchical modeling provides a framework for modeling the
complex interactions typical of problems in applied
statistics. By capturing these relationships, however,
hierarchical models also introduce distinctive pathologies
that quickly limit the efficiency of most common methods of
in- ference. In this paper we explore the use of Hamiltonian
Monte Carlo for hierarchical models and demonstrate how the
algorithm can overcome those pathologies in practical
applications.",
year = 2013,
archivePrefix = "arXiv",
primaryClass = "stat.ME",
eprint = "1312.0906"
}
@article{Stan:JSS:2017,
author = {Bob Carpenter and Andrew Gelman and Matthew Hoffman and Daniel Lee and Ben Goodrich and Michael Betancourt and Marcus Brubaker and Jiqiang Guo and Peter Li and Allen Riddell},
title = {Stan: A Probabilistic Programming Language},
journal = {Journal of Statistical Software, Articles},
volume = {76},
number = {1},
year = {2017},
keywords = {probabilistic programming; Bayesian inference; algorithmic differentiation; Stan},
abstract = {Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.},
issn = {1548-7660},
pages = {1--32},
doi = {10.18637/jss.v076.i01},
url = {https://www.jstatsoft.org/v076/i01}
}
@article{Kucukelbir+etal:ADVI:2017,
title={Automatic differentiation variational inference},
author={Kucukelbir, Alp and Tran, Dustin and Ranganath, Rajesh and Gelman, Andrew and Blei, David M},
journal={The Journal of Machine Learning Research},
volume={18},
pages={430--474},
year={2017},
url={http://jmlr.org/papers/v18/16-107.html}
}
@article{betancourt2017conceptual,
title={A conceptual introduction to {Hamiltonian Monte Carlo}},
author={Betancourt, Michael},
journal={arXiv preprint arXiv:1701.02434},
year={2017},
url ={https://arxiv.org/abs/1701.02434}
}
@book{BDA3,
title={Bayesian Data Analysis, third edition},
author={Gelman, Andrew and Carlin, John B. and Stern, Hal S. and Dunson, David B. and Vehtari, Aki and Rubin, Donald B.},
publisher={CRC Press},
year={2013},
note={Book homepage http://www.stat.columbia.edu/~gelman/book/}}
@article{Gelman+Rubin:1992,
title={Inference from iterative simulation using multiple sequences},
author={Gelman, Andrew and Rubin, Donald B},
journal={Statistical science},
volume={7},
number={4},
pages={457--472},
year={1992}
}
@article{Brooks+Gelman:1998,
author = { Stephen P. Brooks and Andrew Gelman },
title = {General Methods for Monitoring Convergence of Iterative Simulations},
journal = {Journal of Computational and Graphical Statistics},
volume = {7},
number = {4},
pages = {434-455},
year = {1998}
}
@Misc{Stan.2.18,
author = {{Stan Development Team}},
title = {The {Stan} Core Library Version 2.18.0},
year = 2018,
url = {http://mc-stan.org}
}
@Misc{RStan.2.17,
author = {{Stan Development Team}},
title = {{RStan}: the {R} interface to {Stan}. {R} package Version 2.17.3},
year = 2018,
url = {http://mc-stan.org}
}
@Misc{RStanARM.2.17,
author = {{Stan Development Team}},
title = {{RStanArm}: {Bayesian} applied regression modeling via {Stan}. {R} package Version 2.17.4},
year = 2018,
url = {http://mc-stan.org}
}
@Misc{StanManual.2.18.0,
author = {{Stan Development Team}},
title = {Stan Modeling Language Users Guide and Reference Manual. Version 2.18.0},
year = 2018,
url = {http://mc-stan.org}
}
@Article{Geyer:1992,
author = {C J Geyer},
title = {Practical {Markov} Chain {Monte} {Carlo}},
journal = {Statistical Science},
year = {1992},
volume = {7},
pages = {473--483}
}
@InCollection{Geyer:2011,
author = {C J Geyer},
title = {Introduction to {Markov} chain {Monte} {Carlo}},
booktitle = {Handbook of Markov Chain Monte Carlo},
publisher = {CRC Press},
year = {2011},
editor = {S Brooks and A Gelman and G L Jones and X L Meng}
}
@article{Hoffman+Gelman:2014,
author = {Matthew D. Hoffman and Andrew Gelman},
title = {The {No-U-Turn} {Sampler}: Adaptively Setting Path Lengths in {Hamiltonian} {Monte} {Carlo}},
journal = {Journal of Machine Learning Research},
year = {2014},
volume = {15},
pages = {1593-1623},
url = {http://jmlr.org/papers/v15/hoffman14a.html}
}
@article{Vehtari+etal:PSIS:2017,
title={Pareto smoothed importance sampling},
author={Vehtari, Aki and Gelman, Andrew and Gabry, Jonah},
journal={arXiv preprint arXiv:1507.02646},
year={2017},
url={https://arxiv.org/abs/1507.02646}
}
@inproceedings{Piironen+Vehtari:GP-projection:2016,
title = {Projection predictive model selection for {Gaussian} processes},
pages = {1--6},
booktitle = {2016 {IEEE} 26th International Workshop on Machine Learning for Signal Processing ({MLSP})},
author = {Piironen, Juho and Vehtari, Aki},
year = 2016,
}
@article{Catalina+etal:projpredgamms:2020,
title={Projection Predictive Inference for Generalized Linear and Additive Multilevel Models},
author={Alejandro Catalina and Paul-Christian Bürkner and Aki Vehtari},
year={2020},
journal={arxiv preprint:2010.06994}
}
@article{Vehtari+etal:PSIS:2019,
title={Pareto smoothed importance sampling},
author={Vehtari, Aki and Simpson, Daniel and Gelman, Andrew and Yao, Yuling and Gabry, Jonah},
journal={arXiv preprint arXiv:1507.02646},
year={2019},
url={https://arxiv.org/abs/1507.02646v6}
}
@article{Piironen+etal:projpred:2018,
title={Projective Inference in High-dimensional Problems: Prediction and Feature Selection},
author={Piironen, Juho and Paasiniemi, Markus and Vehtari, Aki},
journal={arXiv preprint arXiv:1810.02406},
year={2018},
url={https://arxiv.org/abs/1810.02406}
}
@article{Piironen+etal:projpred:2020,
author = {Piironen, Juho and Paasiniemi, Markus and Vehtari, Aki},
journal = {Electronic Journal of Statistics},
number = 1,
pages = 2155--2197,
title = {Projective inference in high-dimensional problems: Prediction and feature selection},
volume = 14,
year = 2020
}
@Article{Pavone+etal:2020,
title={Using reference models in variable selection},
author={Pavone, Federico and Piironen, Juho and B{\"u}rkner, Paul-Christian and Vehtari, Aki},
journal={arXiv preprint arXiv:2004.13118},
year={2020}
}
@article{Vehtari+etal:PSIS-LOO:2017,
title={Practical {Bayesian} model evaluation using leave-one-out cross-validation and {WAIC}},
author={Vehtari, Aki and Gelman, Andrew and Gabry, Jonah},
journal={Statistics and Computing},
volume={27},
number={5},
pages={1413--1432},
year={2017},
doi={10.1007/s11222-016-9696-4},
url={https://arxiv.org/abs/1507.04544}
}
@article{Piironen+Vehtari:2017a,
author = {Piironen, Juho and Vehtari, Aki},
title = {Comparison of {Bayesian} predictive methods for model selection},
year = {2017},
journal = {Statistics and Computing},
volume = {27},
number = {3},
pages = {711--735},
doi = {10.1007/s11222-016-9649-y},
url = {https://doi.org/10.1007/s11222-016-9649-y}
}
@MANUAL{stanmanual,
title={Stan Modeling Language Users Guide and Reference Manual},
author={{Stan Development Team}},
note={Version 2.17.1},
address={http://mc-stan.org},
year={2018}
}
@inproceedings{Piironen+Vehtari:ISPC:2018,
author = {Piironen, Juho and Vehtari, Aki},
title = {Iterative supervised principal components},
booktitle = {Proceedings of the 21st International Conference on Artificial Intelligence and Statistics},
pages = {106--114},
year = {2018},
editor = {Amos Storkey and Fernando Perez-Cruz},
volume = {84},
series = {Proceedings of Machine Learning Research},
url = {http://proceedings.mlr.press/v84/piironen18a.html}
}
@article{Piironen+Vehtari:RHS:2017,
author = {Piironen, Juho and Vehtari, Aki},
title = {Sparsity information and regularization in the horseshoe and other shrinkage priors},
year = {2017},
journal = {Electronic journal of Statistics},
volume = {11},
number = {2},
pages = {5018--5051},
doi = {10.1214/17-EJS1337SI},
url = {https://projecteuclid.org/euclid.ejs/1513306866}
}
@article{Vehtari+Ojanen:2012,
author = {Vehtari, Aki and Ojanen, Janne},
title = {A survey of {B}ayesian predictive methods for model assessment, selection and comparison},
year = {2012},
journal = {Statistics Surveys},
volume = {6},
pages = {142--228},
doi = {10.1214/12-SS102}
}
@article{Peltola+etal:finite:2012,
title={Finite adaptation and multistep moves in the Metropolis-Hastings algorithm for variable selection in genome-wide association analysis},
author={Peltola, Tomi and Marttinen, Pekka and Vehtari, Aki},
journal={PloS one},
volume={7},
number={11},
pages={e49445},
year={2012},
doi={doi.org/10.1371/journal.pone.0049445}
}
@article{Yao+etal:2018,
author = {Yao, Yuling and Vehtari, Aki and Simpson, Daniel and Gelman, Andrew},
journal = {Bayesian Analysis},
number = {3},
pages = {917--1003},
title = {Using stacking to average {Bayesian} predictive distributions (with discussion)},
doi = {10.1214/17-BA1091},
volume = {13},
year = {2018}
}
@Article{Vehtari+Lampinen:2002b,
author = {Aki Vehtari and Jouko Lampinen},
title = {Bayesian Model Assessment and Comparison Using
Cross-Validation Predictive Densities},
journal = {Neural Computation},
year = {2002},
volume = {14},
number = {10},
pages = {2439-2468}
}
@Article{Kalliomaki+Vehtari+Lampinen:2005,
author = {Ilkka Kalliom{\"a}ki and Aki Vehtari and Jouko
Lampinen},
title = {Shape analysis of concrete aggregates for
statistical quality modeling},
journal = {Machine Vision and Applications},
year = {2005},
volume = {16},
number = {3},
pages = {197--201}
}
@article{Navarro:2019:between,
title={Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection},
author={Navarro, Danielle J},
journal={Computational Brain \& Behavior},
volume={2},
number={1},
pages={28--34},
year={2019}
}
@article{Sivula+etal:2020:loo_uncertainty,
title={Uncertainty in {B}ayesian Leave-One-Out Cross-Validation Based Model Comparison},
author={Sivula, Tuomas and Magnusson, M{\aa}ns and Vehtari, Aki},
journal={arXiv:2008.10296},
year={2020}
}
@article{Gelman+etal:2019:BayesR2,
author = {Andrew Gelman and Ben Goodrich and Jonah Gabry and Aki Vehtari},
title = {R-squared for {Bayesian} Regression Models},
journal = {The American Statistician},
volume = {73},
number = {3},
pages = {307-309},
year = {2019}
}
@Article{Paananen+etal:2021:implicit,
author = {Topi Paananen and Juho Piironen and Paul-Christian B{\"u}rkner and Aki Vehtari},
title = {Implicitly adaptive importance sampling.},
journal = {Statistics and Computing},
volume = 31,
number = 16,
year = 2021
}
@article{Tosh+etal:2021:piranha,
title={The piranha problem: Large effects swimming in a small pond},
author={Tosh, Christopher and Greengard, Philip and Goodrich, Ben and Gelman, Andrew and Vehtari, Aki and Hsu, Daniel},
journal={arXiv preprint arXiv:2105.13445},
year={2021}
}
@article{Yao:2021:hierstacking,
title={Bayesian hierarchical stacking: Some models are (somewhere) useful},
author={Yao, Yuling and Pirš, Gregor and Vehtari, Aki and Gelman, Andrew},
journal={Bayesian Analysis},
note = {doi:10.1214/21-BA1287},
year={2021}
}
@Article{Geisser+Eddy:1979,
author = {Seymour Geisser and William F. Eddy},
title = {A Predictive Approach to Model Selection},
journal = {Journal of the American Statistical Association},
year = {1979},
volume = {74},
number = {365},
pages = {153--160}
}
@Book{Burnham+Anderson:2002,
author = {Kenneth P. Burnham and David R. Anderson},
title = {Model Selection and Multi-Model Inference: A
Practical Information-Theoretic Approach},
publisher = {Springer},
year = {2002},
edition = {2nd}
}
@article{Oelrich+etal:2020:overconfident,
title={When are {Bayesian} model probabilities overconfident?},
author={Oelrich, Oscar and Ding, Shutong and Magnusson, M{\aa}ns and Vehtari, Aki and Villani, Mattias},
journal={arXiv preprint arXiv:2003.04026},
year={2020}
}
@article{Gabry+etal:2019:visualization,
author = {Gabry, Jonah and Simpson, Daniel and Vehtari, Aki and Betancourt, Michael and Gelman, Andrew},
title = {Visualization in {Bayesian} workflow},
journal = {Journal of the Royal Statistical Society: Series A (Statistics in Society)},
volume = 182,
number = 2,
pages = {389-402}
year = 2019
}