-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCleanOpenFaceCSV.py
101 lines (79 loc) · 3.48 KB
/
CleanOpenFaceCSV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import matplotlib.pyplot as pyplot
import seaborn as sns
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import classification_report
def lineUpData(raw_data, annotated_data) :
data = pd.read_csv(raw_data)
labeled_data = pd.read_csv(annotated_data)
diff = len(data) - len(labeled_data)
print("diff is: ", diff)
if diff > 0:
data = data[:-diff]
if diff < 0:
diff = diff * -1
labeled_data = labeled_data[:-diff]
cleaned_data = data[data[' confidence'] > .70]
removed_data = data[data[' confidence'] <= .70]
#align the data
aligned_labels = []
newFrames = []
for index, row in removed_data.iterrows():
newFrames.append(int(row["frame"]) - 1)
labeled_data = labeled_data.drop(newFrames)
return cleaned_data, labeled_data
def main():
cleaned_data1, labeled_data1 = lineUpData("webcam_test_2017-09-30-12-26-14.csv", "annos_s17_2017-09-30_3.csv")
print(len(cleaned_data1))
print(len(labeled_data1))
cleaned_data2, labeled_data2 = lineUpData("webcam_test_2017-09-30-12-05-22.csv", "annos_s17_2017-09-30_2.csv")
print(len(cleaned_data2))
print(len(labeled_data2))
cleaned_data3, labeled_data3 = lineUpData("webcam_test_2017-09-30-11-56-56.csv", "annos_s17_2017-09-30_1.csv")
print(len(cleaned_data3))
print(len(labeled_data3))
cleaned_data4, labeled_data4 = lineUpData("webcam_test_2017-09-26-19-32-41.csv", "annos_s16_2017-09-26.csv")
print(len(cleaned_data4))
print(len(labeled_data4))
cleaned_data5, labeled_data5 = lineUpData("webcam_test_2017-09-22-19-39-14.csv", "annos_s14_2017-09-22.csv")
print(len(cleaned_data5))
print(len(labeled_data5))
cleaned_data = pd.DataFrame()
cleaned_data = cleaned_data.append(cleaned_data1, ignore_index = True)
cleaned_data = cleaned_data.append(cleaned_data2, ignore_index = True)
cleaned_data = cleaned_data.append(cleaned_data3, ignore_index = True)
cleaned_data = cleaned_data.append(cleaned_data4, ignore_index = True)
# cleaned_data = cleaned_data.append(cleaned_data5, ignore_index = True)
labeled_data = pd.DataFrame()
labeled_data = labeled_data.append(labeled_data1, ignore_index = True)
labeled_data = labeled_data.append(labeled_data2, ignore_index = True)
labeled_data = labeled_data.append(labeled_data3, ignore_index = True)
labeled_data = labeled_data.append(labeled_data4, ignore_index = True)
# labeled_data = labeled_data.append(labeled_data5, ignore_index = True)
print(cleaned_data.shape)
print(labeled_data.shape)
labels = labeled_data["C_Gaze"]
labels_train = []
labels_test = []
for i in range(len(labels)):
if labels.values[i] == "away":
labels_train.append(False)
else:
labels_train.append(True)
labels = labeled_data5["C_Gaze"]
for i in range(len(labels)):
if labels.values[i] == "away":
labels_test.append(False)
else:
labels_test.append(True)
cleaned_data_test = cleaned_data5
cleaned_data_train = cleaned_data
LogReg = LogisticRegression(max_iter=10000, penalty='l2', tol=.0001, class_weight="balanced")
LogReg.fit(cleaned_data_train, labels_train)
y_pred = LogReg.predict(cleaned_data_test)
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(labels_test, y_pred)
print(confusion_matrix)
main()