forked from NOAA-GFDL/SIS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSIS_sum_output.F90
878 lines (765 loc) · 42.6 KB
/
SIS_sum_output.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
module SIS_sum_output
!***********************************************************************
!* GNU General Public License *
!* This file is a part of SIS2. *
!* *
!* SIS2 is free software; you can redistribute it and/or modify it and *
!* are expected to follow the terms of the GNU General Public License *
!* as published by the Free Software Foundation; either version 2 of *
!* the License, or (at your option) any later version. *
!* *
!* SIS2 is distributed in the hope that it will be useful, but WITHOUT *
!* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
!* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public *
!* License for more details. *
!* *
!* For the full text of the GNU General Public License, *
!* write to: Free Software Foundation, Inc., *
!* 675 Mass Ave, Cambridge, MA 02139, USA. *
!* or see: http://www.gnu.org/licenses/gpl.html *
!***********************************************************************
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
! !
! This file contains the subroutines that calculate globally integrated !
! sea-ice quantities for SIS2, and writes them to a netcdf file and and an !
! ASCII output file. This code was originally adapted from MOM_sum_output.F90 !
! by Robert Hallberg in May 2014. !
! !
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
use MOM_coms, only : sum_across_PEs, PE_here, root_PE, num_PEs, max_across_PEs
use MOM_coms, only : reproducing_sum
use MOM_coms, only : EFP_type, operator(+), operator(-), assignment(=), EFP_to_real, real_to_EFP
use MOM_error_handler, only : SIS_error=>MOM_error, FATAL, WARNING, is_root_pe
use MOM_file_parser, only : get_param, log_param, log_version, param_file_type
! use MOM_io, only : create_file, fieldtype, flush_file, reopen_file, vardesc, write_field
use MOM_io, only : open_file
use MOM_io, only : APPEND_FILE, ASCII_FILE, SINGLE_FILE, WRITEONLY_FILE
use MOM_string_functions, only : slasher
use MOM_time_manager, only : time_type, get_time, set_time, operator(>), operator(-)
use MOM_time_manager, only : get_date, get_calendar_type, NO_CALENDAR
! use MOM_tracer_flow_control, only : tracer_flow_control_CS, call_tracer_stocks
use SIS_types, only : ice_state_type, ice_ocean_flux_type, fast_ice_avg_type
use SIS_types, only : ocean_sfc_state_type
use SIS_hor_grid, only : SIS_hor_grid_type
use ice_grid, only : ice_grid_type
use SIS2_ice_thm, only : enth_from_TS, get_SIS2_thermo_coefs, ice_thermo_type
use SIS_sum_output_type, only : SIS_sum_out_CS
use netcdf
implicit none ; private
#include <SIS2_memory.h>
public write_ice_statistics, accumulate_bottom_input
public SIS_sum_output_init, SIS_sum_output_end, SIS_sum_out_CS
public accumulate_input_1, accumulate_input_2
!-----------------------------------------------------------------------
! integer, parameter :: NUM_FIELDS = 17
! type, public :: SIS_sum_out_CS ; private
! real :: fresh_water_input ! The total mass of fresh water added by
! ! surface fluxes since the last time that
! real :: mass_prev ! The total sea ice mass the last time that
! ! write_ice_statistics was called, in kg.
! real :: salt_prev ! The total amount of salt in the sea ice the last
! ! time that write_ice_statistics was called, in PSU kg.
! real :: net_salt_input ! The total salt added by surface fluxes since
! ! the last time that write_ice_statistics was called,
! ! in PSU kg.
! real :: heat_prev ! The total amount of heat in the sea ice the last
! ! time that write_ice_statistics was called, in Joules.
! real :: net_heat_input ! The total heat added by surface fluxes since
! ! the last time that write_ice_statistics was called,
! ! in Joules.
! type(EFP_type) :: &
! fresh_water_in_EFP, & ! These are extended fixed point versions of the
! net_salt_in_EFP, & ! correspondingly named variables above.
! net_heat_in_EFP, heat_prev_EFP, salt_prev_EFP, mass_prev_EFP
! real :: dt ! The baroclinic dynamics time step, in s.
! real :: timeunit ! The length of the units for the time
! ! axis, in s.
! type(time_type) :: Start_time ! The start time of the simulation.
! ! Start_time is set in MOM_initialization.F90
! logical :: write_stdout ! If true, periodically write sea ice statistics
! ! to stdout to allow the progress to be seen.
! logical :: write_stocks ! If true, write the integrated tracer amounts
! ! to stdout when the statistics files are written.
! integer :: previous_calls = 0 ! The number of times write_ice_statistics has been called.
! integer :: prev_n = 0 ! The value of n from the last call.
! ! integer :: statsfile_nc ! NetCDF id of the statistics file.
! integer :: statsfile_ascii ! The unit number of the ascii version of the statistics file.
! ! type(fieldtype), dimension(NUM_FIELDS+MAX_FIELDS_) :: &
! ! fields ! fieldtype variables for the output fields.
! character(len=200) :: statsfile ! The name of the statistics file with path.
! end type SIS_sum_out_CS
contains
subroutine SIS_sum_output_init(G, param_file, directory, Input_start_time, CS, &
ntrunc)
type(SIS_hor_grid_type), intent(in) :: G
type(param_file_type), intent(in) :: param_file
character(len=*), intent(in) :: directory
type(time_type), intent(in) :: Input_start_time
type(SIS_sum_out_CS), pointer :: CS
integer, target, optional,intent(inout) :: ntrunc
! Arguments: G - The sea ice model's grid structure.
! (in) param_file - A structure indicating the open file to parse for
! model parameter values.
! (in) directory - The directory where the statistics file goes.
! (in) Input_start_time - The start time of the simulation.
! (in/out) CS - A pointer that is set to point to the control structure
! for this module
! (in/out,opt) ntrunc - The integer that stores the number of times the velocity
! has been truncated since the last call to write_ice_statistics.
real :: Rho_0, maxvel
! This include declares and sets the variable "version".
#include "version_variable.h"
character(len=40) :: mod = "SIS_sum_output" ! This module's name.
character(len=200) :: statsfile ! The name of the statistics file.
if (associated(CS)) then
call SIS_error(WARNING, "SIS_sum_output_init called with associated control structure.")
return
endif
allocate(CS)
if (present(ntrunc)) then ; CS%ntrunc => ntrunc ; else ; allocate(CS%ntrunc) ; endif
CS%ntrunc = 0
! Read all relevant parameters and write them to the model log.
call log_version(param_file, mod, version, "")
call get_param(param_file, mod, "WRITE_STOCKS", CS%write_stocks, &
"If true, write the integrated tracer amounts to stdout \n"//&
"when the statistics files are written.", default=.true.)
call get_param(param_file, mod, "STDOUT_HEARTBEAT", CS%write_stdout, &
"If true, periodically write sea ice statistics to \n"//&
"stdout to allow the progress to be seen.", default=.true.)
call get_param(param_file, mod, "DT_ICE_DYNAMICS", CS%dt, &
"The time step used for the slow ice dynamics, including "//&
"stepping the continuity equation and interactions between "//&
"the ice mass field and velocities.", units="s", &
default=-1.0, do_not_log=.true.)
call get_param(param_file, mod, "MAXTRUNC", CS%maxtrunc, &
"The run will be stopped, and the day set to a very \n"//&
"large value if the velocity is truncated more than \n"//&
"MAXTRUNC times between writing ice statistics. \n"//&
"Set MAXTRUNC to 0 to stop if there is any truncation \n"//&
"of sea ice velocities.", units="truncations save_interval-1", default=0)
call get_param(param_file, mod, "STATISTICS_FILE", statsfile, &
"The file to use to write the globally integrated \n"//&
"statistics.", default="seaice.stats")
CS%statsfile = trim(slasher(directory))//trim(statsfile)
call log_param(param_file, mod, "output_path/STATISTICS_FILE", CS%statsfile)
#ifdef STATSLABEL
CS%statsfile = trim(CS%statsfile)//"."//trim(adjustl(STATSLABEL))
#endif
call get_param(param_file, mod, "TIMEUNIT", CS%Timeunit, &
"The time unit in seconds a number of input fields", &
units="s", default=86400.0)
if (CS%Timeunit < 0.0) CS%Timeunit = 86400.0
call get_param(param_file, mod, "COLUMN_CHECK", CS%column_check, &
"If true, add code to allow debugging of conservation \n"//&
"column-by-column. This does not change answers, but \n"//&
"can increase model run time.", default=.false.)
call get_param(param_file, mod, "IMBALANCE_TOLERANCE", CS%imb_tol, &
"The tolerance for imbalances to be flagged by COLUMN_CHECK.", &
units="nondim", default=1.0e-9)
CS%Start_time = Input_start_time
allocate(CS%water_in_col(G%isd:G%ied, G%jsd:G%jed)) ; CS%water_in_col(:,:) = 0.0
allocate(CS%heat_in_col(G%isd:G%ied, G%jsd:G%jed)) ; CS%heat_in_col(:,:) = 0.0
allocate(CS%salt_in_col(G%isd:G%ied, G%jsd:G%jed)) ; CS%salt_in_col(:,:) = 0.0
if (CS%column_check) then
allocate(CS%water_col_prev(G%isd:G%ied, G%jsd:G%jed)) ; CS%water_col_prev(:,:) = 0.0
allocate(CS%heat_col_prev(G%isd:G%ied, G%jsd:G%jed)) ; CS%heat_col_prev(:,:) = 0.0
allocate(CS%salt_col_prev(G%isd:G%ied, G%jsd:G%jed)) ; CS%salt_col_prev(:,:) = 0.0
endif
end subroutine SIS_sum_output_init
subroutine SIS_sum_output_end(CS)
type(SIS_sum_out_CS), pointer :: CS
! This subroutine deallocates the memory owned by this module.
! Argument: CS - The control structure returned by a previous call to
! SIS_sum_output_init.
if (associated(CS)) then
deallocate(CS)
endif
end subroutine SIS_sum_output_end
subroutine write_ice_statistics(IST, day, n, G, IG, CS, message, check_column) !, tracer_CSp)
type(ice_state_type), intent(inout) :: IST
type(time_type), intent(inout) :: day
integer, intent(in) :: n
type(SIS_hor_grid_type), intent(inout) :: G
type(ice_grid_type), intent(inout) :: IG
type(SIS_sum_out_CS), pointer :: CS
character(len=*), optional, intent(in) :: message
logical, optional, intent(in) :: check_column
! type(tracer_flow_control_CS), optional, pointer :: tracer_CSp
! This subroutine calculates and writes the total sea-ice mass by
! hemisphere, heat, salt, and other globally integrated quantities.
! Arguments: u - Zonal velocity, in m s-1.
! (in) v - Meridional velocity, in m s-1.
! (in) h - Layer thickness, in m.
! (in) tv - A structure containing pointers to any available
! thermodynamic fields, including potential temperature and
! salinity or mixed layer density. Absent fields have NULL ptrs.
! (in/out) day - The current model time.
! (in) n - The time step number of the current execution.
! (in) G - The sea ice model's grid structure.
! (in) CS - The control structure returned by a previous call to
! SIS_sum_output_init.
! (in,opt) message - A text message to use with this output.
! (in,opt) check_column - If true, check for column-wise heat and mass conservation.
real, dimension(SZI_(G),SZJ_(G), 2) :: &
ice_area, & ! The area of ice in each cell and hemisphere, in m2.
ice_extent, & ! The extent (cells with >10% coverage) of ice in each
! cell and hemisphere, in m2.
col_mass, & ! The column integrated ice and snow mass in each cell and
! hemisphere, in kg.
col_heat, & ! The column integrated ice and snow heat in each cell and
! hemisphere, in J.
col_salt ! The column integrated salt in the ice in each cell and
! hemisphere in kg.
real, dimension(2) :: &
Area_NS, & ! The total sea-ice area in the two hemispheres, in m2.
Extent_NS, & ! The total sea-ice extent in the two hemispheres, in m2.
Heat_NS, & ! The total sea-ice enthalpy in the two hemispheres, in J.
mass_NS, & ! The total sea-ice mass in the two hemispheres, in kg.
salt_NS, & ! The total sea-ice salt in the two hemispheres, in kg.
salinity_NS ! The average sea-ice salinity in the two hemispheres, in g/kg.
real :: Mass ! The total mass of the sea ice and snow atop it in kg.
real :: mass_chg ! The change in total sea ice mass of fresh water since
! the last call to this subroutine, in kg.
real :: mass_anom ! The change in fresh water that cannot be accounted for
! by the surface fluxes, in kg.
real :: I_Mass ! Adcroft's rule reciprocal of mass: 1/Mass or 0, in kg-1.
real :: Salt ! The total amount of salt in the ocean, in PSU kg.
real :: Salt_chg ! The change in total sea ice salt since the last call
! to this subroutine, in PSU kg.
real :: Salt_anom ! The change in salt that cannot be accounted for by
! the surface fluxes, in PSU kg.
real :: Salt_anom_norm ! The salt anomaly normalized by salt (if it is nonzero).
real :: salin ! The mean salinity of the ocean, in PSU.
real :: salin_chg ! The change in total salt since the last call
! to this subroutine divided by total mass, in PSU.
real :: salin_anom ! The change in total salt that cannot be accounted for by
! the surface fluxes divided by total mass in PSU.
real :: salin_mass_in ! The mass of salt input since the last call, kg.
real :: Heat ! The total amount of Heat in the ocean, in Joules.
real :: Heat_chg ! The change in total sea ice heat since the last call
! to this subroutine, in Joules.
real :: Heat_anom ! The change in heat that cannot be accounted for by
! the surface fluxes, in Joules.
real :: Heat_anom_norm ! The heat anomaly normalized by heat (if it is nonzero).
real :: temp ! The mean potential temperature of the ocean, in C.
real :: temp_anom ! The change in total heat that cannot be accounted for
! by the surface fluxes, divided by the total heat
! capacity of the ocean, in C.
real :: Area ! The total area of the sea ice in m2.
real :: Extent ! The total extent of the sea ice in m2.
real :: heat_imb ! The column integrated heat imbalance in enth_unit kg m-2.
real :: mass_imb ! The column integrated mass imbalance in kg.
real :: enth_liq_0 ! The enthalpy of liquid water at the freezing point, in enth_unit.
real :: I_nlay, kg_H_nlay, area_pt
real :: area_h ! The masked area of a column.
type(EFP_type) :: &
mass_EFP, & ! Extended fixed point sums of total mass, etc.
salt_EFP, heat_EFP, salt_chg_EFP, heat_chg_EFP, mass_chg_EFP, &
mass_anom_EFP, salt_anom_EFP, heat_anom_EFP
real :: CFL_trans ! A transport-based definition of the CFL number, nondim.
real :: CFL_u, CFL_v ! Simple CFL numbers for u- and v- advection, nondim.
real :: dt_CFL ! The timestep for calculating the CFL number, in s.
real :: max_CFL ! The maximum of the CFL numbers, nondim.
real, dimension(SZI_(G),SZJ_(G)) :: &
Temp_int, Salt_int
logical :: check_col
integer :: num_nc_fields ! The number of fields that will actually go into
! the NetCDF file.
integer :: i, j, k, is, ie, js, je, L, m, nlay, ncat, hem
integer :: start_of_day, num_days
integer :: iyear, imonth, iday, ihour, iminute, isecond, itick ! For call to get_date()
real :: reday, var
character(len=120) :: statspath_nc
character(len=300) :: mesg
character(len=48) :: msg_start
character(len=32) :: mesg_intro, time_units, day_str, n_str, trunc_str
integer :: isc, iec, jsc, jec
! real :: Tr_stocks(MAX_FIELDS_)
! real :: Tr_min(MAX_FIELDS_),Tr_max(MAX_FIELDS_)
! real :: Tr_min_x(MAX_FIELDS_), Tr_min_y(MAX_FIELDS_), Tr_min_z(MAX_FIELDS_)
! real :: Tr_max_x(MAX_FIELDS_), Tr_max_y(MAX_FIELDS_), Tr_max_z(MAX_FIELDS_)
! logical :: Tr_minmax_got(MAX_FIELDS_) = .false.
! character(len=40), dimension(MAX_FIELDS_) :: &
! Tr_names, Tr_units
! integer :: nTr_stocks
! A description for output of each of the fields.
! type(vardesc) :: vars(NUM_FIELDS+MAX_FIELDS_)
! num_nc_fields = 17
! vars(6) = vardesc("Mass_cat","Total Ice Mass by Category",'1','L','s',"kg")
! vars(7) = vardesc("Mass","Total Mass",'1','1','s',"kg")
! vars(8) = vardesc("Mass_chg","Total Mass Change between Entries",'1','1','s',"kg")
! vars(9) = vardesc("Mass_anom","Anomalous Total Mass Change",'1','1','s',"kg")
! vars(12) = vardesc("Salt","Total Salt",'1','1','s',"kg")
! vars(13) = vardesc("Salt_chg","Total Salt Change between Entries",'1','1','s',"kg")
! vars(14) = vardesc("Salt_anom","Anomalous Total Salt Change",'1','1','s',"kg")
! vars(15) = vardesc("Heat","Total Heat",'1','1','s',"Joules")
! vars(16) = vardesc("Heat_chg","Total Heat Change between Entries",'1','1','s',"Joules")
! vars(17) = vardesc("Heat_anom","Anomalous Total Heat Change",'1','1','s',"Joules")
is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec
! Isq = G%IscB ; Ieq = G%IecB ; Jsq = G%JscB ; Jeq = G%JecB
isc = G%isc ; iec = G%iec ; jsc = G%jsc ; jec = G%jec
ncat = IG%CatIce ; nlay = IG%NkIce
check_col = .false. ; if (present(check_column) .and. CS%column_check) check_col = check_column
I_nlay = 1.0 / (1.0*nlay)
kg_H_nlay = IG%H_to_kg_m2 * I_nlay
if (.not.associated(CS)) call SIS_error(FATAL, &
"write_ice_statistics: Module must be initialized before it is used.")
! nTr_stocks = 0
! if (present(tracer_CSp)) then
! call call_tracer_stocks(h, Tr_stocks, G, tracer_CSp, stock_names=Tr_names, stock_units=Tr_units, num_stocks=nTr_stocks,&
! got_min_max=Tr_minmax_got, global_min=Tr_min, global_max=Tr_max, &
! xgmin=Tr_min_x, ygmin=Tr_min_y, zgmin=Tr_min_z,&
! xgmax=Tr_max_x, ygmax=Tr_max_y, zgmax=Tr_max_z)
! if (nTr_stocks > 0) then
! do m=1,nTr_stocks
! vars(num_nc_fields+m) = &
! vardesc(Tr_names(m), Tr_names(m),'1','1','s',Tr_units(m))
! enddo
! num_nc_fields = num_nc_fields + nTr_stocks
! endif
! endif
if (CS%previous_calls == 0) then
! Reopen or create a text output file, with an explanatory header line.
if (is_root_pe()) then
if (day > CS%Start_time) then
call open_file(CS%statsfile_ascii, trim(CS%statsfile), &
action=APPEND_FILE, form=ASCII_FILE, nohdrs=.true.)
else
call open_file(CS%statsfile_ascii, trim(CS%statsfile), &
action=WRITEONLY_FILE, form=ASCII_FILE, nohdrs=.true.)
if (abs(CS%timeunit - 86400.0) < 1.0) then
write(CS%statsfile_ascii,'(" Step,",7x,"Day,",20x,"Area(N/S),",22x,"Extent(N/S),",17x,&
&"Mass(N/S),",22x,"Heat(N/S),",14x,"Salinty(N/S), Frac Mass Err, Temp Err, Salin Err")')
write(CS%statsfile_ascii,'(12x,"[days]",23x,"[m2]",28x,"[m2]",24x,"[kg]",29x,&
&"[J]",21x,"[g/kg]",10x,"[Nondim]",6x,"[Nondim]",6x,"[Nondim]")')
else
if ((CS%timeunit >= 0.99) .and. (CS%timeunit < 1.01)) then
time_units = " [seconds] "
else if ((CS%timeunit >= 3599.0) .and. (CS%timeunit < 3601.0)) then
time_units = " [hours] "
else if ((CS%timeunit >= 86399.0) .and. (CS%timeunit < 86401.0)) then
time_units = " [days] "
else if ((CS%timeunit >= 3.0e7) .and. (CS%timeunit < 3.2e7)) then
time_units = " [years] "
else
write(time_units,'(9x,"[",es8.2," s] ")') CS%timeunit
endif
write(CS%statsfile_ascii,'(" Step,",7x,"Time, Area(N/S), Extent(N/S), &
&Mass, Heat, Salt, Frac Mass Err, Heat Err, Salin Err")')
write(CS%statsfile_ascii,'(A25,10x,"[m2]",11x,"[m2]",7x,"[kg]",13x,&
&"[J]",9x,"[kg]",6x,"[Nondim]",8x,"[J]",8x,"[kg]")') time_units
endif
endif
endif
statspath_nc = trim(CS%statsfile) // ".nc"
! if (day > CS%Start_time) then
! call reopen_file(CS%statsfile_nc, trim(statspath_nc), vars, &
! num_nc_fields, G, CS%fields, SINGLE_FILE, CS%timeunit)
! else
! call create_file(CS%statsfile_nc, trim(statspath_nc), vars, &
! num_nc_fields, G, CS%fields, SINGLE_FILE, CS%timeunit)
! endif
endif
! The following quantities are to be written by hemisphere:
! Ice area, ice extent, Ice+snow mass, enthalpy, salt
! Error analysis on mass, enthalpy, salt
ice_area(:,:,:) = 0.0
ice_extent(:,:,:) = 0.0
col_mass(:,:,:) = 0.0
col_heat(:,:,:) = 0.0
col_salt(:,:,:) = 0.0
enth_liq_0 = Enth_from_TS(0.0, 0.0, IST%ITV)
do j=js,je ; do i=is,ie
hem = 1 ; if (G%geolatT(i,j) < 0.0) hem = 2
do k=1,ncat ; if (G%mask2dT(i,j) * IST%part_size(i,j,k) > 0.0) then
area_pt = G%areaT(i,j) * G%mask2dT(i,j) * IST%part_size(i,j,k)
ice_area(i,j,hem) = ice_area(i,j,hem) + area_pt
col_mass(i,j,hem) = col_mass(i,j,hem) + area_pt * IG%H_to_kg_m2 * &
(IST%mH_ice(i,j,k) + (IST%mH_snow(i,j,k) + &
IST%mH_pond(i,j,k))) ! mw/new - assumed pond heat/salt = 0
col_heat(i,j,hem) = col_heat(i,j,hem) + area_pt * IG%H_to_kg_m2 * &
(IST%mH_snow(i,j,k) * IST%enth_snow(i,j,k,1) + &
IST%mH_pond(i,j,k) * enth_liq_0)
do L=1,nlay
col_heat(i,j,hem) = col_heat(i,j,hem) + area_pt * &
((IST%mH_ice(i,j,k)*kg_H_nlay) * IST%enth_ice(i,j,k,L))
col_salt(i,j,hem) = col_salt(i,j,hem) + area_pt * &
((0.001*IST%mH_ice(i,j,k)*kg_H_nlay) * IST%sal_ice(i,j,k,L))
enddo
endif ; enddo
if (ice_area(i,j,hem) > 0.1*G%AreaT(i,j)) ice_extent(i,j,hem) = G%AreaT(i,j)
enddo ; enddo
Area = reproducing_sum(ice_area, sums=Area_NS)
Extent = reproducing_sum(ice_extent, sums=Extent_NS)
Heat = reproducing_sum(col_heat, sums=Heat_NS, EFP_sum=heat_EFP)
Mass = reproducing_sum(col_mass, sums=Mass_NS, EFP_sum=mass_EFP)
Salt = reproducing_sum(col_salt, sums=Salt_NS, EFP_sum=salt_EFP)
salinity_NS(:) = 0.0
do hem=1,2
if (mass_NS(hem) > 0.0) salinity_NS(hem) = salt_NS(hem) / mass_NS(hem)
enddo
! Calculate the maximum CFL numbers.
max_CFL = 0.0
dt_CFL = max(CS%dt, 0.)
if (allocated(IST%u_ice_C)) then ; do j=js,je ; do I=is-1,ie
if (IST%u_ice_C(I,j) < 0.0) then
CFL_trans = (-IST%u_ice_C(I,j) * dt_CFL) * (G%dy_Cu(I,j) * G%IareaT(i+1,j))
else
CFL_trans = (IST%u_ice_C(I,j) * dt_CFL) * (G%dy_Cu(I,j) * G%IareaT(i,j))
endif
max_CFL = max(max_CFL, CFL_trans)
enddo ; enddo ; endif
if (allocated(IST%v_ice_C)) then ; do J=js-1,je ; do i=is,ie
if (IST%v_ice_C(i,J) < 0.0) then
CFL_trans = (-IST%v_ice_C(i,J) * dt_CFL) * (G%dx_Cv(i,J) * G%IareaT(i,j+1))
else
CFL_trans = (IST%v_ice_C(i,J) * dt_CFL) * (G%dx_Cv(i,J) * G%IareaT(i,j))
endif
max_CFL = max(max_CFL, CFL_trans)
enddo ; enddo ; endif
if ( .not.(allocated(IST%u_ice_C) .or. allocated(IST%v_ice_C)) .and. &
(allocated(IST%u_ice_B) .and. allocated(IST%v_ice_B)) ) then
do J=js-1,je ; do I=is-1,ie
CFL_u = abs(IST%u_ice_B(I,J)) * dt_CFL * G%IdxBu(I,J)
CFL_v = abs(IST%v_ice_B(I,J)) * dt_CFL * G%IdyBu(I,J)
max_CFL = max(max_CFL, CFL_u, CFL_v)
enddo ; enddo
endif
call sum_across_PEs(CS%ntrunc)
! if (nTr_stocks > 0) call sum_across_PEs(Tr_stocks,nTr_stocks)
call max_across_PEs(max_CFL)
if (CS%previous_calls == 0) then
CS%mass_prev = Mass ; CS%fresh_water_input = 0.0
CS%salt_prev = Salt ; CS%net_salt_input = 0.0
CS%heat_prev = Heat ; CS%net_heat_input = 0.0
CS%mass_prev_EFP = mass_EFP ; CS%fresh_water_in_EFP = real_to_EFP(0.0)
CS%salt_prev_EFP = salt_EFP ; CS%net_salt_in_EFP = real_to_EFP(0.0)
CS%heat_prev_EFP = heat_EFP ; CS%net_heat_in_EFP = real_to_EFP(0.0)
else
do j=js,je ; do i=is,ie
area_h = G%areaT(i,j) * G%mask2dT(i,j)
CS%water_in_col(i,j) = area_h * CS%water_in_col(i,j)
CS%heat_in_col(i,j) = area_h * CS%heat_in_col(i,j)
CS%salt_in_col(i,j) = area_h * CS%salt_in_col(i,j)
enddo ; enddo
CS%fresh_water_input = reproducing_sum(CS%water_in_col, EFP_sum=CS%fresh_water_in_EFP)
CS%net_salt_input = reproducing_sum(CS%salt_in_col, EFP_sum=CS%net_salt_in_EFP)
CS%net_heat_input = reproducing_sum(CS%heat_in_col, EFP_sum=CS%net_heat_in_EFP)
endif
Salt_chg_EFP = Salt_EFP - CS%salt_prev_EFP
Salt_anom_EFP = Salt_chg_EFP - CS%net_salt_in_EFP
Salt_chg = EFP_to_real(Salt_chg_EFP) ; Salt_anom = EFP_to_real(Salt_anom_EFP)
Heat_chg_EFP = Heat_EFP - CS%heat_prev_EFP
Heat_anom_EFP = Heat_chg_EFP - CS%net_heat_in_EFP
Heat_chg = EFP_to_real(Heat_chg_EFP) ; Heat_anom = EFP_to_real(Heat_anom_EFP)
mass_chg_EFP = mass_EFP - CS%mass_prev_EFP
salin_mass_in = 0.0
! if (G%Boussinesq) then
mass_anom_EFP = mass_chg_EFP - CS%fresh_water_in_EFP
! else
! net_salt_input needs to be converted from psu m s-1 to kg m-2 s-1.
! mass_anom_EFP = mass_chg_EFP - CS%fresh_water_in_EFP
! salin_mass_in = 0.001*EFP_to_real(CS%net_salt_in_EFP)
! endif
mass_chg = EFP_to_real(mass_chg_EFP)
mass_anom = EFP_to_real(mass_anom_EFP) - salin_mass_in
I_Mass = 0.0 ; if (Mass > 0.0) I_Mass = 1.0/Mass
salin = Salt * I_Mass ; salin_anom = Salt_anom * I_Mass
! salin_chg = Salt_chg / Mass
! temp = heat / (Mass* CI) ; temp_anom = Heat_anom / (Mass* CI)
call get_time(day, start_of_day, num_days)
if (abs(CS%timeunit - 86400.0) < 1.0) then
reday = REAL(num_days)+ (REAL(start_of_day)/86400.0)
mesg_intro = "SIS Day "
else
reday = REAL(num_days)*(86400.0/CS%timeunit) + &
REAL(start_of_day)/abs(CS%timeunit)
mesg_intro = "SIS Time "
endif
if (reday < 1.0e8) then ; write(day_str, '(F12.3)') reday
elseif (reday < 1.0e11) then ; write(day_str, '(F15.3)') reday
else ; write(day_str, '(ES15.9)') reday ; endif
if (n < 1000000) then ; write(n_str, '(I6)') n
elseif (n < 10000000) then ; write(n_str, '(I7)') n
elseif (n < 100000000) then ; write(n_str, '(I8)') n
else ; write(n_str, '(I10)') n ; endif
if (CS%ntrunc < 1000000) then ; write(trunc_str, '(I6)') CS%ntrunc
elseif (CS%ntrunc < 10000000) then ; write(trunc_str, '(I7)') CS%ntrunc
elseif (CS%ntrunc < 100000000) then ; write(trunc_str, '(I8)') CS%ntrunc
else ; write(trunc_str, '(I10)') CS%ntrunc ; endif
msg_start = trim(n_str)//","//trim(day_str)
if (present(message)) msg_start = trim(message)
msg_start = trim(msg_start)//", "//trim(trunc_str)
if (is_root_pe()) then
Heat_anom_norm = 0.0 ; if (Heat /= 0.0) Heat_anom_norm = Heat_anom/Heat
Salt_anom_norm = 0.0 ; if (Salt /= 0.0) Salt_anom_norm = Salt_anom/Salt
write(CS%statsfile_ascii,'(A,", Area", 2(ES19.12), ", Ext", 2(es11.4), ", CFL", F6.3, &
&", M",2(ES12.5),", Enth",2(ES13.5),", S ",2(f8.4),", Me ",ES9.2,&
&", Te ",ES9.2,", Se ",ES9.2)') &
trim(msg_start), Area_NS(1:2), Extent_NS(1:2), max_CFL, mass_NS(1:2), &
heat_NS(1:2), 1000.*salinity_NS(1:2), mass_anom * I_Mass, &
Heat_anom_norm, salt_anom_norm
endif
if (is_root_pe() .and. CS%write_stdout) then
if (get_calendar_type() == NO_CALENDAR) then
write(*,'(A,A," ",A,": Area", 2(ES19.12), ", Mass ", 2(ES18.11))') &
trim(mesg_intro), trim(day_str(1:3))//trim(day_str(4:)), trim(n_str), &
Area_NS(1:2), mass_NS(1:2)
else
call get_date(day, iyear, imonth, iday, ihour, iminute, isecond, itick)
write(*,'("SIS Date",i7,2("/",i2.2)," ",i2.2,2(":",i2.2)," ",A, &
&": Area", 2(ES19.12), ", Mass ", 2(ES18.11))') &
iyear, imonth, iday, ihour, iminute, isecond, trim(n_str), Area_NS(1:2), mass_NS(1:2)
endif
if (CS%ntrunc > 0) then
write(*,'(A," Sea Ice Truncations ",I0)') &
trim(mesg_intro)//trim(day_str), CS%ntrunc
endif
if (CS%write_stocks) then
msg_start = " Total"
if (present(message)) msg_start = trim(message)
write(*,'(A," Ice Mass: ",ES24.16,", Change: ",ES12.5," Error: ",ES12.5," (",ES8.1,")")') &
trim(msg_start), Mass, mass_chg, mass_anom, mass_anom * I_Mass
if (Salt == 0.) then
write(*,'(A," Ice Salt: ",ES24.16,", Change: ",ES12.5," Error: ",ES12.5)') &
trim(msg_start), Salt*0.001, Salt_chg*0.001, Salt_anom*0.001
else
write(*,'(A," Ice Salt: ",ES24.16,", Change: ",ES12.5," Error: ",ES12.5," (",ES8.1,")")') &
trim(msg_start), Salt*0.001, Salt_chg*0.001, Salt_anom*0.001, Salt_anom/Salt
endif
if (Heat == 0.) then
write(*,'(A," Ice Heat: ",ES24.16,", Change: ",ES12.5," Error: ",ES12.5)') &
trim(msg_start), Heat, Heat_chg, Heat_anom
else
write(*,'(A," Ice Heat: ",ES24.16,", Change: ",ES12.5," Error: ",ES12.5," (",ES8.1,")")') &
trim(msg_start), Heat, Heat_chg, Heat_anom, Heat_anom/Heat
endif
! do m=1,nTr_stocks
! write(*,'(" Total ",a,": ",ES24.16,X,a)') &
! trim(Tr_names(m)), Tr_stocks(m), trim(Tr_units(m))
!
! if(Tr_minmax_got(m)) then
! write(*,'(64X,"Global Min:",ES24.16,X,"at: (", f7.2,","f7.2,","f8.2,")" )') &
! Tr_min(m),Tr_min_x(m),Tr_min_y(m),Tr_min_z(m)
! write(*,'(64X,"Global Max:",ES24.16,X,"at: (", f7.2,","f7.2,","f8.2,")" )') &
! Tr_max(m),Tr_max_x(m),Tr_max_y(m),Tr_max_z(m)
! endif
! enddo
endif ! write_stocks
endif ! write_stdout
if (check_col .and. (CS%previous_calls > 0)) then ; do j=js,je ; do i=is,ie
hem = 1 ; if (G%geolatT(i,j) < 0.0) hem = 2
heat_imb = (col_heat(i,j,hem) - CS%heat_col_prev(i,j)) - CS%heat_in_col(i,j)
mass_imb = (col_mass(i,j,hem) - CS%water_col_prev(i,j)) - CS%water_in_col(i,j)
if (abs(mass_imb) > CS%imb_tol*abs(Mass) .and. (abs(Mass) > 0.0)) then
write(mesg,'("Mass imbalance of ",ES11.4," (",ES8.1,") detected at i,j=",2(i4), &
&" Lon/Lat = ",2(f8.2))') &
mass_imb, mass_imb/max(abs(mass),abs(mass_imb)), &
i, j, G%geolonT(i,j), G%geolatT(i,j)
call SIS_error(WARNING, mesg, all_print=.true.)
endif
if (abs(heat_imb) > CS%imb_tol*abs(Heat) .and. (abs(Heat) > 0.0)) then
write(mesg,'("Heat imbalance of ",ES11.4," (",ES8.1,") detected at i,j=",2(i4), &
&" Lon/Lat = ",2(f8.2))') &
heat_imb, heat_imb/max(abs(heat),abs(heat_imb)), i, j, &
G%geolonT(i,j), G%geolatT(i,j)
call SIS_error(WARNING, mesg, all_print=.true.)
endif
enddo ; enddo ; endif
! var = real(CS%ntrunc)
! call write_field(CS%statsfile_nc, CS%fields(1), var, reday)
! call write_field(CS%statsfile_nc, CS%fields(2), toten, reday)
! call write_field(CS%statsfile_nc, CS%fields(3), PE, reday)
! call write_field(CS%statsfile_nc, CS%fields(4), KE, reday)
! call write_field(CS%statsfile_nc, CS%fields(5), H_0APE, reday)
! call write_field(CS%statsfile_nc, CS%fields(6), mass_lay, reday)
! call write_field(CS%statsfile_nc, CS%fields(7), Mass, reday)
! call write_field(CS%statsfile_nc, CS%fields(8), mass_chg, reday)
! call write_field(CS%statsfile_nc, CS%fields(9), mass_anom, reday)
! call write_field(CS%statsfile_nc, CS%fields(10), max_CFL(1), reday)
! call write_field(CS%statsfile_nc, CS%fields(11), max_CFL(1), reday)
! call write_field(CS%statsfile_nc, CS%fields(12), 0.001*Salt, reday)
! call write_field(CS%statsfile_nc, CS%fields(13), 0.001*salt_chg, reday)
! call write_field(CS%statsfile_nc, CS%fields(14), 0.001*salt_anom, reday)
! call write_field(CS%statsfile_nc, CS%fields(15), Heat, reday)
! call write_field(CS%statsfile_nc, CS%fields(16), heat_chg, reday)
! call write_field(CS%statsfile_nc, CS%fields(17), heat_anom, reday)
! do m=1,nTr_stocks
! call write_field(CS%statsfile_nc, CS%fields(17+m), Tr_stocks(m), reday)
! enddo
! call flush_file(CS%statsfile_nc)
if (is_root_pe() .and. (CS%ntrunc>CS%maxtrunc)) then
call SIS_error(FATAL, "write_ice_statistics: Sea ice velocity has been "//&
"truncated too many times.")
endif
CS%ntrunc = 0
CS%previous_calls = CS%previous_calls + 1
if (CS%column_check) then ; do j=js,je ; do i=is,ie
CS%water_col_prev(i,j) = col_mass(i,j,1) + col_mass(i,j,2)
CS%heat_col_prev(i,j) = col_heat(i,j,1) + col_heat(i,j,2)
CS%salt_col_prev(i,j) = col_salt(i,j,1) + col_salt(i,j,2)
enddo ; enddo ; endif
CS%mass_prev = Mass ; CS%fresh_water_input = 0.0
CS%salt_prev = Salt ; CS%net_salt_input = 0.0
CS%heat_prev = Heat ; CS%net_heat_input = 0.0
CS%water_in_col(:,:) = 0.0
CS%heat_in_col(:,:) = 0.0
CS%salt_in_col(:,:) = 0.0
CS%mass_prev_EFP = mass_EFP ; CS%fresh_water_in_EFP = real_to_EFP(0.0)
CS%salt_prev_EFP = Salt_EFP ; CS%net_salt_in_EFP = real_to_EFP(0.0)
CS%heat_prev_EFP = Heat_EFP ; CS%net_heat_in_EFP = real_to_EFP(0.0)
end subroutine write_ice_statistics
subroutine accumulate_bottom_input(IST, OSS, FIA, IOF, dt, G, IG, CS)
! This subroutine accumulates the net input of fresh water and heat through
! the bottom of the sea-ice for conservation checks.
! Arguments: IST - The internal sea ice state type.
! (in) dt - The amount of time over which to average.
! (in) G - The sea ice model's grid structure.
! (in) IG - The sea-ice-specific grid structure.
! (in) CS - The control structure returned by a previous call to
! SIS_sum_output_init.
type(SIS_hor_grid_type), intent(in) :: G
type(ice_grid_type), intent(in) :: IG
type(ice_state_type), intent(in) :: IST
type(ocean_sfc_state_type), intent(in) :: OSS
type(fast_ice_avg_type), intent(in) :: FIA
type(ice_ocean_flux_type), intent(in) :: IOF
real, intent(in) :: dt
type(SIS_sum_out_CS), pointer :: CS
real :: Flux_SW, enth_units, LI
integer :: i, j, k, isc, iec, jsc, jec, ncat
isc = G%isc ; iec = G%iec ; jsc = G%jsc ; jec = G%jec ; ncat = IG%CatIce
call get_SIS2_thermo_coefs(IST%ITV, enthalpy_units=enth_units, Latent_fusion=LI)
if (CS%dt < 0.0) CS%dt = dt
do j=jsc,jec ; do i=isc,iec
CS%water_in_col(i,j) = CS%water_in_col(i,j) - dt * &
( ((FIA%runoff(i,j) + FIA%calving(i,j)) + &
(IOF%lprec_ocn_top(i,j) + IOF%fprec_ocn_top(i,j))) - IOF%flux_q_ocn_top(i,j) )
Flux_SW = (IOF%flux_sw_vis_dir_ocn(i,j) + IOF%flux_sw_vis_dif_ocn(i,j)) + &
(IOF%flux_sw_nir_dir_ocn(i,j) + IOF%flux_sw_nir_dif_ocn(i,j))
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) - (dt * enth_units) * &
( Flux_SW + &
((IOF%flux_lw_ocn_top(i,j) - IOF%flux_lh_ocn_top(i,j)) - IOF%flux_t_ocn_top(i,j)) + &
(-LI)*(IOF%fprec_ocn_top(i,j) + FIA%calving(i,j)) )
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) - enth_units * &
(OSS%frazil(i,j)-FIA%frazil_left(i,j))
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + &
((IOF%Enth_Mass_in_atm(i,j) + IOF%Enth_Mass_in_ocn(i,j)) + &
(IOF%Enth_Mass_out_atm(i,j) + IOF%Enth_Mass_out_ocn(i,j)) )
CS%salt_in_col(i,j) = CS%salt_in_col(i,j) + dt * IOF%flux_salt(i,j)
enddo ; enddo
end subroutine accumulate_bottom_input
subroutine accumulate_input_1(IST, FIA, dt, G, IG, CS)
! This subroutine accumulates the net input of fresh water and heat through
! the top of the sea-ice for conservation checks.
! Arguments: IST - The internal sea ice state type.
! (in) dt - The amount of time over which to average.
! (in) IG - The sea-ice-specific grid structure.
! (in) G - The sea ice model's grid structure.
! (in) CS - The control structure returned by a previous call to
! SIS_sum_output_init.
type(ice_state_type), intent(in) :: IST
type(fast_ice_avg_type), intent(in) :: FIA
real, intent(in) :: dt
type(SIS_hor_grid_type), intent(in) :: G
type(ice_grid_type), intent(in) :: IG
type(SIS_sum_out_CS), pointer :: CS
real, dimension(SZI_(G),SZJ_(G)) :: &
FW_in, & ! The net fresh water input, integrated over a timestep in kg.
salt_in, & ! The total salt added by surface fluxes, integrated
! over a time step in PSU kg.
heat_in ! The total heat added by surface fluxes, integrated
! over a time step in Joules.
real :: FW_input ! The net fresh water input, integrated over a timestep
! and summed over space, in kg.
real :: salt_input ! The total salt added by surface fluxes, integrated
! over a time step and summed over space, in kg.
real :: heat_input ! The total heat added by surface fluxes, integrated
! over a time step and summed over space, in Joules.
real :: area_h, area_pt, Flux_SW
real :: enth_units
type(EFP_type) :: &
FW_in_EFP, & ! Extended fixed point versions of FW_input, salt_input, and
salt_in_EFP, & ! heat_input, in kg, PSU kg, and Joules.
heat_in_EFP !
integer :: i, j, k, isc, iec, jsc, jec, ncat
isc = G%isc ; iec = G%iec ; jsc = G%jsc ; jec = G%jec ; ncat = IG%CatIce
call get_SIS2_thermo_coefs(IST%ITV, enthalpy_units=enth_units)
FW_in(:,:) = 0.0 ; salt_in(:,:) = 0.0 ; heat_in(:,:) = 0.0
!$OMP parallel do default(none) shared(isc,iec,jsc,jec,ncat,IST,CS,enth_units,dt,FIA) &
!$OMP private(area_pt,Flux_SW)
do j=jsc,jec ; do k=1,ncat ; do i=isc,iec
area_pt = IST%part_size(i,j,k)
Flux_SW = (FIA%flux_sw_vis_dir_top(i,j,k) + FIA%flux_sw_vis_dif_top(i,j,k)) + &
(FIA%flux_sw_nir_dir_top(i,j,k) + FIA%flux_sw_nir_dif_top(i,j,k))
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + ((dt * area_pt) * enth_units) * &
( Flux_SW * (1.0 - FIA%sw_abs_ocn(i,j,k)) + &
((FIA%flux_lw_top(i,j,k) - FIA%flux_t_top(i,j,k)) ) + &
(-FIA%flux_lh_top(i,j,k)) + FIA%bheat(i,j))
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) - (enth_units * area_pt) * &
(FIA%bmelt(i,j,k) + FIA%tmelt(i,j,k))
enddo ; enddo ; enddo
end subroutine accumulate_input_1
subroutine accumulate_input_2(IST, FIA, IOF, part_size, dt, G, IG, CS)
! This subroutine accumulates the net input of fresh water and heat through
! the top of the sea-ice for conservation checks.
! Arguments: IST - The internal sea ice state type.
! (in) part_size - The fractional ice concentration within a cell in each
! thickness category, nondimensional, 0-1.
! (in) dt - The amount of time over which to average.
! (in) G - The sea ice model's grid structure.
! (in) IG - The sea-ice-specific grid structure.
! (in) CS - The control structure returned by a previous call to
! SIS_sum_output_init.
type(SIS_hor_grid_type), intent(inout) :: G
type(ice_grid_type), intent(inout) :: IG
type(ice_state_type), intent(inout) :: IST
type(fast_ice_avg_type), intent(in) :: FIA
type(ice_ocean_flux_type), intent(in) :: IOF
real, dimension(SZI_(G),SZJ_(G),SZCAT0_(IG)), intent(in) :: part_size
real, intent(in) :: dt
type(SIS_sum_out_CS), pointer :: CS
real :: area_pt, Flux_SW, pen_frac
real :: enth_units, LI
integer :: i, j, k, m, isc, iec, jsc, jec, ncat
isc = G%isc ; iec = G%iec ; jsc = G%jsc ; jec = G%jec ; ncat = IG%CatIce
! This subroutine includes the accumulation of mass fluxes and heat fluxes
! into the ice that are known before SIS#_thermodynamics, as well the
! ice-top fluxes that will be passed on directly to the ocean. It does
! not include the enthalpy changes due to net mass changes in the ice,
! as these are not yet known.
call get_SIS2_thermo_coefs(IST%ITV, enthalpy_units=enth_units, Latent_fusion=LI)
!$OMP parallel do default(none) shared(isc,iec,jsc,jec,CS,dt,IST,FIA,IOF,&
!$OMP enth_units, LI) &
!$OMP private(area_pt)
do j=jsc,jec ; do i=isc,iec
! Runoff and calving are passed directly on to the ocean.
CS%water_in_col(i,j) = CS%water_in_col(i,j) + dt * &
(FIA%runoff(i,j) + FIA%calving(i,j))
area_pt = IST%part_size(i,j,0)
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + ((dt * area_pt) * enth_units) * &
((FIA%flux_lw_top(i,j,0) - FIA%flux_lh_top(i,j,0)) - FIA%flux_t_top(i,j,0))
! These are mass fluxes that are simply passed through to the ocean.
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + (dt * enth_units) * (-LI) * &
(area_pt * FIA%fprec_top(i,j,0) + FIA%calving(i,j))
enddo ; enddo
! The terms that are added here include surface fluxes that will be passed
! directly on into the ocean.
!$OMP parallel do default(none) shared(isc,iec,jsc,jec,ncat,part_size,IST,CS,dt,enth_units,FIA)&
!$OMP private(area_pt,pen_frac,Flux_SW)
do j=jsc,jec ; do k=0,ncat ; do i=isc,iec
area_pt = part_size(i,j,k)
pen_frac = 1.0 ; if (k>0) pen_frac = FIA%sw_abs_ocn(i,j,k)
Flux_SW = (FIA%flux_sw_vis_dir_top(i,j,k) + FIA%flux_sw_vis_dif_top(i,j,k)) + &
(FIA%flux_sw_nir_dir_top(i,j,k) + FIA%flux_sw_nir_dif_top(i,j,k))
CS%water_in_col(i,j) = CS%water_in_col(i,j) + (dt * area_pt) * &
( (FIA%lprec_top(i,j,k) + FIA%fprec_top(i,j,k)) - FIA%flux_q_top(i,j,k) )
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + ((dt * area_pt) * enth_units) * &
( pen_frac*Flux_SW )
if (k>0) &
CS%heat_in_col(i,j) = CS%heat_in_col(i,j) + (area_pt * enth_units) * &
((FIA%bmelt(i,j,k) + FIA%tmelt(i,j,k)) - dt*FIA%bheat(i,j))
enddo ; enddo ; enddo
! Runoff and calving do not bring in salt, so salt_in(i,j) = 0.0
end subroutine accumulate_input_2
end module SIS_sum_output