-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmltools.py
129 lines (111 loc) · 4.31 KB
/
mltools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"Adapted from the code (https://github.com/leena201818/radiom) contributed by leena201818"
import matplotlib
#matplotlib.use('Tkagg')
import matplotlib.pyplot as plt
import numpy as np
import pickle
# Show loss curves
def show_history(history):
plt.figure()
plt.title('Training loss performance')
plt.plot(history.epoch, history.history['loss'], label='train loss+error')
plt.plot(history.epoch, history.history['val_loss'], label='val_error')
plt.legend()
plt.savefig('figure/total_loss.png')
plt.close()
plt.figure()
plt.title('Training accuracy performance')
plt.plot(history.epoch, history.history['acc'], label='train_acc')
plt.plot(history.epoch, history.history['val_acc'], label='val_acc')
plt.legend()
plt.savefig('figure/total_acc.png')
plt.close()
train_acc=history.history['acc']
val_acc=history.history['val_acc']
train_loss=history.history['loss']
val_loss=history.history['val_loss']
epoch=history.epoch
np_train_acc=np.array(train_acc)
np_val_acc=np.array(val_acc)
np_train_loss=np.array(train_loss)
np_val_loss=np.array(val_loss)
np_epoch=np.array(epoch)
np.savetxt('train_acc.txt',np_train_acc)
np.savetxt('train_loss.txt',np_train_loss)
np.savetxt('val_acc.txt',np_val_acc)
np.savetxt('val_loss.txt',np_val_loss)
def plot_lstm2layer_output(a,modulation_type=None,save_filename=None):
plt.figure(figsize=(4,3),dpi=600)
plt.plot(range(128),a[0],label=modulation_type)
plt.legend()
plt.xticks([]) #去掉横坐标值
plt.yticks([])
plt.savefig(save_filename,dpi=600,bbox_inches ='tight')
plt.tight_layout()
plt.close()
def plot_conv4layer_output(a,modulation_type=None):
plt.figure(figsize=(4,3),dpi=600)
for i in range(100):
plt.plot(range(124),a[0,0,:,i])
plt.xticks([]) #去掉横坐标值
plt.yticks(size=20)
save_filename='./figure_conv4_output/output%d.png'%i
plt.savefig(save_filename,dpi=600,bbox_inches='tight')
plt.tight_layout()
plt.close()
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.get_cmap("Blues"), labels=[],save_filename=None):
plt.figure(figsize=(4, 3),dpi=600)
plt.imshow(cm*100, interpolation='nearest', cmap=cmap)
#plt.title(title,fontsize=10)
plt.colorbar()
tick_marks = np.arange(len(labels))
plt.xticks(tick_marks, labels, rotation=90,size=12)
plt.yticks(tick_marks, labels,size=12)
#np.set_printoptions(precision=2, suppress=True)
for i in range(len(tick_marks)):
for j in range(len(tick_marks)):
if i!=j:
text=plt.text(j,i,int(np.around(cm[i,j]*100)),ha="center",va="center",fontsize=10)
elif i==j:
if int(np.around(cm[i,j]*100))==100:
text=plt.text(j,i,int(np.around(cm[i,j]*100)),ha="center",va="center",fontsize=7,color='darkorange')
else:
text=plt.text(j,i,int(np.around(cm[i,j]*100)),ha="center",va="center",fontsize=10,color='darkorange')
plt.tight_layout()
if save_filename is not None:
plt.savefig(save_filename,dpi=600,bbox_inches = 'tight')
plt.close()
def calculate_confusion_matrix(Y,Y_hat,classes):
n_classes = len(classes)
conf = np.zeros([n_classes,n_classes])
confnorm = np.zeros([n_classes,n_classes])
for k in range(0,Y.shape[0]):
i = list(Y[k,:]).index(1)
j = int(np.argmax(Y_hat[k,:]))
conf[i,j] = conf[i,j] + 1
for i in range(0,n_classes):
confnorm[i,:] = conf[i,:] / np.sum(conf[i,:])
# print(confnorm)
right = np.sum(np.diag(conf))
wrong = np.sum(conf) - right
return confnorm,right,wrong
def main():
import dataset2016
import numpy as np
(mods,snrs,lbl),(X_train,Y_train),(X_val,Y_val),(X_test,Y_test),(train_idx,val_idx,test_idx) = \
dataset2016.load_data()
one_sample = X_test[0]
print(np.shape(one_sample))
print(one_sample[0:2])
print(np.max(one_sample,axis=1))
one_sample = np.power(one_sample,2)
one_sample = np.sqrt(one_sample[0,:]+one_sample[1,:])
plt.figure()
plt.title('Training Samples')
one_sample_t = np.arange(128)
plt.plot(one_sample_t,one_sample)
# plt.scatter()
plt.grid()
plt.show()
sum_sample = np.sum(one_sample)
print(sum_sample)