-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset2016.py
81 lines (71 loc) · 2.96 KB
/
dataset2016.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pickle
import numpy as np
# def load_data(filename=r'/home/xujialang/ZhangFuXin/AMR/tranining/RML2016.10a_dict.pkl'):
def load_data(filename=r'/content/drive/MyDrive/modrec/RML2016.10a_dict.pkl'):
# Xd1 = pickle.load(open(filename1,'rb'),encoding='iso-8859-1')#Xd1.keys() mod中没有AM-SSB Xd1(120W,2,128)
Xd =pickle.load(open(filename,'rb'),encoding='iso-8859-1')#Xd2(22W,2,128)
mods,snrs = [sorted(list(set([k[j] for k in Xd.keys()]))) for j in [0,1] ]
X = []
# X2=[]
lbl = []
# lbl2=[]
train_idx=[]
val_idx=[]
np.random.seed(2016)
a=0
for mod in mods:
for snr in snrs:
X.append(Xd[(mod,snr)]) #ndarray(1000,2,128)
for i in range(Xd[(mod,snr)].shape[0]):
lbl.append((mod,snr))
train_idx+=list(np.random.choice(range(a*1000,(a+1)*1000), size=600, replace=False))
val_idx+=list(np.random.choice(list(set(range(a*1000,(a+1)*1000))-set(train_idx)), size=200, replace=False))
a+=1
X = np.vstack(X) #(220000,2,128) mods * snr * 1000,total 220000 samples
# X2=np.vstack(X2) #(162060,2,128)
print(len(lbl))
# Partition the data
# into training and test sets of the form we can train/test on
# while keeping SNR and Mod labels handy for each
n_examples=X.shape[0]
# n_test=X2.shape[0]
test_idx = list(set(range(0,n_examples))-set(train_idx)-set(val_idx))
np.random.shuffle(train_idx)
np.random.shuffle(val_idx)
np.random.shuffle(test_idx)
# test_idx=np.random.choice(range(0,n_test),size=n_test,replace=False)
X_train = X[train_idx]
X_val=X[val_idx]
X_test = X[test_idx]
print(len(train_idx))
print(len(val_idx))
print(len(test_idx))
print(X_train.shape)
print(X_val.shape)
print(X_test.shape)
def to_onehot(yy):
# yy1 = np.zeros([len(yy), max(yy)+1])
yy1 = np.zeros([len(yy), len(mods)])
yy1[np.arange(len(yy)), yy] = 1
return yy1
# yy = list(map(lambda x: mods.index(lbl[x][0]), train_idx))
Y_train = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), train_idx)))
Y_val=to_onehot(list(map(lambda x: mods.index(lbl[x][0]), val_idx)))
Y_test = to_onehot(list(map(lambda x: mods.index(lbl[x][0]),test_idx)))
print(Y_train.shape)
print(Y_val.shape)
print(Y_test.shape)
# Y_one_hot = np.zeros([len(lbl),len(mods)])
# for i in range(len(lbl)):
# Y_one_hot[i,mods.index(lbl[i][0])] = 1.
#
# Y_train2 = Y_one_hot[train_idx]
# Y_test2 = Y_one_hot[test_idx]
#
# print( np.all(Y_test2 == Y_test) )
#X_train=X_train.swapaxes(2,1)
#X_val=X_val.swapaxes(2,1)
#X_test=X_test.swapaxes(2,1)
return (mods,snrs,lbl),(X_train,Y_train),(X_val,Y_val),(X_test,Y_test),(train_idx,val_idx,test_idx)
if __name__ == '__main__':
(mods, snrs, lbl), (X_train, Y_train),(X_val,Y_val), (X_test, Y_test), (train_idx,val_idx,test_idx) = load_data()