-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBigCylinderDiffraction.nb
2108 lines (2088 loc) · 116 KB
/
BigCylinderDiffraction.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.4' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 118718, 2100]
NotebookOptionsPosition[ 117997, 2070]
NotebookOutlinePosition[ 118361, 2086]
CellTagsIndexPosition[ 118318, 2083]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Get", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\<../src/MultipleScattering2D.wl\>\""}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"MemoryInUse", "[", "]"}],
RowBox[{"(*",
RowBox[{
"useful", " ", "function", " ", "when", " ", "using", " ", "many", " ",
RowBox[{"scatterers", "!"}]}], "*)"}]}]}], "Input",
CellChangeTimes->{{3.7191264418094*^9, 3.719126442402156*^9}, {
3.719130081156681*^9, 3.71913010983748*^9}, {3.7191311970615*^9,
3.7191311987768593`*^9}, 3.719141147916902*^9}],
Cell[BoxData["52901888"], "Output",
CellChangeTimes->{{3.719141183326336*^9, 3.719141186043461*^9},
3.719141294503508*^9, 3.719145258791741*^9, 3.7192200628593273`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Names", "[", "\"\<MultipleScattering2D`*\>\"", "]"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.7191411519351254`*^9, 3.719141173975975*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"AttenuationFromListFrequency\"\>", ",", "\<\"CombineWaves\"\>",
",", "\<\"ConvolutionTest\"\>",
",", "\<\"CylindricalWaveFromCoefficients\"\>",
",", "\<\"DrawScatterers\"\>", ",", "\<\"ExportListCylindricalWave\"\>",
",", "\<\"ExportListFrequency\"\>", ",", "\<\"ExportListWaves\"\>",
",", "\<\"FrequencyFromScatterers\"\>", ",", "\<\"GenerateParticles\"\>",
",", "\<\"ImportBoundaryFrequency\"\>",
",", "\<\"ImportListCylindricalWave\"\>",
",", "\<\"ImportListFrequency\"\>", ",", "\<\"ImportListWaves\"\>",
",", "\<\"ListCylindricalWaveDueToImpulse\"\>",
",", "\<\"ListenersOutsideScatterers\"\>", ",", "\<\"ListPlotSequence\"\>",
",", "\<\"ListWavesDueToImpulse\"\>",
",", "\<\"MultipleScatteringCoefficients\"\>", ",", "\<\"OutWave\"\>",
",", "\<\"PlotCylindricalWave\"\>",
",", "\<\"rng\[Omega]FourierOffset\"\>",
",", "\<\"ScatteringCoefficientOperator\"\>",
",", "\<\"SetParametersAndReturnOptions\"\>",
",", "\<\"SingleScattererCoefficientsFromImpulse\"\>",
",", "\<\"StatsFromParticles\"\>", ",", "\<\"TotalWave\"\>"}],
"}"}]], "Output",
CellChangeTimes->{{3.7191411747607517`*^9, 3.719141187973328*^9},
3.719141296486413*^9, 3.719145260633922*^9, 3.719220064002984*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Diffraction from a large cylinder", "Chapter",
CellChangeTimes->{{3.6581293221919603`*^9, 3.658129332714596*^9}, {
3.660463919696763*^9, 3.660463926297003*^9}, {3.662743876417746*^9,
3.662743890385994*^9}, {3.6627439285072517`*^9, 3.6627439351816053`*^9}, {
3.719151177710041*^9, 3.719151183790825*^9}, {3.71922016378645*^9,
3.719220168135065*^9}, {3.7192284746861773`*^9, 3.719228474909833*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"radius", " ", "of", " ", "the", " ", "scatterers"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"radius", "=", "10."}], ";"}], " ", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"max", " ", "number", " ", "of", " ", "hankel", " ", "functions", " ",
"per", " ", "scatterer"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"N0", "=", "6"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"angular", " ", "frequency"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Omega]s", " ", "=", " ",
RowBox[{"{", "2.", "}"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"options", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\"\<ImpulsePosition\>\"", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\"\<SourceWave\>\"", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"I", "/", "4"}], " ",
RowBox[{"HankelH1", "[",
RowBox[{"0", ",",
RowBox[{
RowBox[{"#2", " ",
RowBox[{"Norm", "[",
RowBox[{"{",
RowBox[{
RowBox[{"#1", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{"#1", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}], "]"}]}], " ", "/.",
RowBox[{"Abs", "->", "Identity"}]}]}], "]"}]}], "&"}], ")"}]}],
",",
RowBox[{"(*",
RowBox[{"chose", " ", "2", "D", " ", "greens"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
"\"\<BoundaryCondition\>\"", "\[Rule]", " ", "\"\<Dirchlett\>\""}]}],
RowBox[{"(*",
RowBox[{
"\"\<BoundaryCondition\>\"", "\[Rule]", " ", "\"\<Neumann\>\""}],
"*)"}], "\[IndentingNewLine]", "}"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"Position", " ", "of", " ", "the", " ", "scatterers", " ", "and", " ",
RowBox[{"listeners", "/", "recievers"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Xs", "=",
RowBox[{"{",
RowBox[{"{",
RowBox[{"0", ",", "15"}], "}"}], "}"}]}], ";"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.6581293221919603`*^9, 3.658129332714596*^9}, {
3.660463919696763*^9, 3.660463926297003*^9}, {3.662743876417746*^9,
3.6627438886731377`*^9}, {3.662743977526123*^9, 3.6627440109501047`*^9}, {
3.662744149910984*^9, 3.66274424760734*^9}, {3.662744763806871*^9,
3.6627447643580437`*^9}, {3.662744813082358*^9, 3.662744813210886*^9}, {
3.662883138285207*^9, 3.662883138440536*^9}, 3.6628831807746353`*^9, {
3.6628832258119392`*^9, 3.662883236285036*^9}, {3.662883809286693*^9,
3.662883809470682*^9}, {3.662884441654792*^9, 3.662884478559091*^9},
3.662884517590742*^9, {3.662885762159151*^9, 3.662885764551669*^9}, {
3.662885855899521*^9, 3.662885863444744*^9}, 3.6628862945906487`*^9, {
3.662886345365781*^9, 3.66288642514789*^9}, {3.662886539392873*^9,
3.66288653979016*^9}, 3.662886585054809*^9, {3.663000162648704*^9,
3.6630001748548098`*^9}, 3.6630017085945187`*^9, {3.663060982769505*^9,
3.6630610070228252`*^9}, {3.663069501617249*^9, 3.663069502857572*^9}, {
3.663070846861308*^9, 3.663070881825128*^9}, {3.6630712289871397`*^9,
3.663071250263049*^9}, {3.6630712803391933`*^9, 3.6630712842538137`*^9},
3.6630717437662497`*^9, {3.663251039072723*^9, 3.6632510884755363`*^9},
3.6632525593589973`*^9, 3.663253663391574*^9, {3.663255486598201*^9,
3.663255486740343*^9}, {3.663311820833703*^9, 3.663311862817922*^9},
3.663312297443722*^9, {3.663324707545908*^9, 3.663324707744875*^9}, {
3.663325395109603*^9, 3.663325395713241*^9}, {3.663327035911784*^9,
3.6633270380466957`*^9}, {3.6633270831992283`*^9,
3.6633271222429657`*^9}, {3.663332906247139*^9, 3.663332909597625*^9}, {
3.663332977084631*^9, 3.6633329955655117`*^9}, {3.663333031861416*^9,
3.663333046028613*^9}, {3.6633335381627417`*^9, 3.663333538953724*^9}, {
3.6633351883539553`*^9, 3.663335188904065*^9}, {3.66333524432812*^9,
3.663335244447506*^9}, {3.66334106083245*^9, 3.6633410644338703`*^9}, {
3.663341110067521*^9, 3.663341145802*^9}, {3.6633411881101627`*^9,
3.663341227636591*^9}, {3.663393167914195*^9, 3.663393168910933*^9}, {
3.663393251823824*^9, 3.663393298170933*^9}, {3.6633935154571447`*^9,
3.663393515914633*^9}, {3.6634035476351357`*^9, 3.663403572211451*^9}, {
3.6634041159486217`*^9, 3.663404121450615*^9}, {3.663404245365078*^9,
3.663404245454895*^9}, 3.663920711068486*^9, {3.6639575852781467`*^9,
3.6639575856045523`*^9}, {3.719126464863349*^9, 3.719126469360358*^9}, {
3.719126568101214*^9, 3.719126661487691*^9}, {3.7191267517221003`*^9,
3.71912675354986*^9}, {3.71912682839052*^9, 3.719126907857046*^9}, {
3.719127138365275*^9, 3.719127214517799*^9}, {3.719127498032785*^9,
3.719127502028578*^9}, {3.719128560080537*^9, 3.7191285715003157`*^9}, {
3.7191359683017273`*^9, 3.719136017767446*^9}, 3.719137498847726*^9,
3.7191375624677877`*^9, {3.719145300505685*^9, 3.71914532831712*^9}, {
3.719145368218519*^9, 3.719145373569416*^9}, 3.719145414627865*^9,
3.719149983059125*^9, 3.7191501001155767`*^9, {3.719150421708433*^9,
3.719150421926962*^9}, {3.7191506101684713`*^9, 3.7191506148586273`*^9}, {
3.7191509596711807`*^9, 3.7191509642489157`*^9}, {3.719151038057522*^9,
3.719151168312048*^9}, {3.719151200533164*^9, 3.719151268255097*^9}, {
3.7191514419662952`*^9, 3.719151765173897*^9}, {3.719151798132627*^9,
3.719151903378352*^9}, 3.719152371352344*^9, {3.719153363531255*^9,
3.7191533864833307`*^9}, {3.7191537502177773`*^9, 3.71915376830939*^9}, {
3.719153826158627*^9, 3.719153975053405*^9}, {3.719154017871594*^9,
3.719154018944398*^9}, {3.719155047736331*^9, 3.719155101985896*^9}, {
3.719220173454788*^9, 3.719220190646305*^9}, {3.7192202874512177`*^9,
3.7192203231402607`*^9}, {3.71922054172945*^9, 3.719220555981889*^9}, {
3.7192284823427973`*^9, 3.719228482695774*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"choose", " ", "mesh"}], "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{
RowBox[{"rngX", "=",
RowBox[{"Range", "[",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ", "radius"}], ",",
RowBox[{"8", " ", "radius"}], ",",
RowBox[{"radius", "/", "4"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
"\t",
RowBox[{
RowBox[{"rngY", "=",
RowBox[{"Range", "[",
RowBox[{"0.", ",",
RowBox[{"8", " ", "radius"}], ",",
RowBox[{"radius", "/", "4"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
" ",
RowBox[{
RowBox[{"listeners", " ", "=", " ",
RowBox[{"ListenersOutsideScatterers", "[",
RowBox[{"radius", ",", "Xs", ",", "rngX", ",", "rngY"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"Calculate", " ", "response", " ", "at", " ", "every", " ", "mesh", " ",
"point"}], " ", "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"responses", " ", "=",
RowBox[{"FrequencyFromScatterers", "[",
RowBox[{
"listeners", ",", " ", "Xs", ",", "radius", ",", " ", "N0", ",",
"\[Omega]s"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"plot", " ", "the", " ", "real", " ", "part", " ", "of", " ", "the", " ",
"result"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"Flatten", "@",
RowBox[{"{",
RowBox[{
RowBox[{"listeners", "[",
RowBox[{"[", "#", "]"}], "]"}], ",",
RowBox[{"Re", "@",
RowBox[{"responses", "[",
RowBox[{"[",
RowBox[{"#", ",", "1", ",", "2"}], "]"}], "]"}]}]}], "}"}]}],
"&"}], "/@",
RowBox[{"Range", "[",
RowBox[{"Length", "@", "responses"}], "]"}]}]}], ";"}],
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"p1", "=",
RowBox[{"ListDensityPlot", "[",
RowBox[{"data", ",",
RowBox[{"InterpolationOrder", "\[Rule]", "1"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], " ", "]"}]}], ";"}],
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"p2", " ", "=", " ",
RowBox[{"DrawScatterers", "[",
RowBox[{"Xs", ",", "radius"}], "]"}]}], ";"}], "\[IndentingNewLine]",
"\t",
RowBox[{"p", " ", "=",
RowBox[{"Show", "[",
RowBox[{"p1", ",", "p2", ",",
RowBox[{"AspectRatio", "\[Rule]", " ", "Automatic"}]}], "]"}]}], "\n",
RowBox[{"Export", "[",
RowBox[{
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\<../media/BugCylinderDiffraction.pdf\>\""}], ",", "p"}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.6581293221919603`*^9, 3.658129332714596*^9}, {
3.660463919696763*^9, 3.660463926297003*^9}, {3.662743876417746*^9,
3.6627438886731377`*^9}, {3.662743977526123*^9, 3.6627440109501047`*^9}, {
3.662744149910984*^9, 3.66274424760734*^9}, {3.662744763806871*^9,
3.6627447643580437`*^9}, {3.662744813082358*^9, 3.662744813210886*^9}, {
3.662883138285207*^9, 3.662883138440536*^9}, 3.6628831807746353`*^9, {
3.6628832258119392`*^9, 3.662883236285036*^9}, {3.662883809286693*^9,
3.662883809470682*^9}, {3.662884441654792*^9, 3.662884478559091*^9},
3.662884517590742*^9, {3.662885762159151*^9, 3.662885764551669*^9}, {
3.662885855899521*^9, 3.662885863444744*^9}, 3.6628862945906487`*^9, {
3.662886345365781*^9, 3.66288642514789*^9}, {3.662886539392873*^9,
3.66288653979016*^9}, 3.662886585054809*^9, {3.663000162648704*^9,
3.6630001748548098`*^9}, 3.6630017085945187`*^9, {3.663060982769505*^9,
3.6630610070228252`*^9}, {3.663069501617249*^9, 3.663069502857572*^9}, {
3.663070846861308*^9, 3.663070881825128*^9}, {3.6630712289871397`*^9,
3.663071250263049*^9}, {3.6630712803391933`*^9, 3.6630712842538137`*^9},
3.6630717437662497`*^9, {3.663251039072723*^9, 3.6632510884755363`*^9},
3.6632525593589973`*^9, 3.663253663391574*^9, {3.663255486598201*^9,
3.663255486740343*^9}, {3.663311820833703*^9, 3.663311862817922*^9},
3.663312297443722*^9, {3.663324707545908*^9, 3.663324707744875*^9}, {
3.663325395109603*^9, 3.663325395713241*^9}, {3.663327035911784*^9,
3.6633270380466957`*^9}, {3.6633270831992283`*^9,
3.6633271222429657`*^9}, {3.663332906247139*^9, 3.663332909597625*^9}, {
3.663332977084631*^9, 3.6633329955655117`*^9}, {3.663333031861416*^9,
3.663333046028613*^9}, {3.6633335381627417`*^9, 3.663333538953724*^9}, {
3.6633351883539553`*^9, 3.663335188904065*^9}, {3.66333524432812*^9,
3.663335244447506*^9}, {3.66334106083245*^9, 3.6633410644338703`*^9}, {
3.663341110067521*^9, 3.663341145802*^9}, {3.6633411881101627`*^9,
3.663341227636591*^9}, {3.663393167914195*^9, 3.663393168910933*^9}, {
3.663393251823824*^9, 3.663393298170933*^9}, {3.6633935154571447`*^9,
3.663393515914633*^9}, {3.6634035476351357`*^9, 3.663403572211451*^9}, {
3.6634041159486217`*^9, 3.663404121450615*^9}, {3.663404245365078*^9,
3.663404245454895*^9}, 3.663920711068486*^9, {3.6639575852781467`*^9,
3.6639575856045523`*^9}, {3.719126464863349*^9, 3.719126469360358*^9}, {
3.719126568101214*^9, 3.719126661487691*^9}, {3.7191267517221003`*^9,
3.71912675354986*^9}, {3.71912682839052*^9, 3.719126907857046*^9}, {
3.719127138365275*^9, 3.719127214517799*^9}, {3.719127498032785*^9,
3.719127502028578*^9}, {3.719128560080537*^9, 3.7191285715003157`*^9}, {
3.7191359683017273`*^9, 3.719136017767446*^9}, 3.719137498847726*^9,
3.7191375624677877`*^9, {3.719145300505685*^9, 3.71914532831712*^9}, {
3.719145368218519*^9, 3.719145373569416*^9}, 3.719145414627865*^9,
3.719149983059125*^9, 3.7191501001155767`*^9, {3.719150421708433*^9,
3.719150421926962*^9}, {3.7191506101684713`*^9, 3.7191506148586273`*^9}, {
3.7191509596711807`*^9, 3.7191509642489157`*^9}, {3.719151038057522*^9,
3.719151168312048*^9}, {3.719151200533164*^9, 3.719151268255097*^9}, {
3.7191514419662952`*^9, 3.719151765173897*^9}, {3.719151798132627*^9,
3.719151903378352*^9}, 3.719152371352344*^9, {3.719153363531255*^9,
3.7191533864833307`*^9}, {3.7191537502177773`*^9, 3.719153750702847*^9}, {
3.719154025771454*^9, 3.719154049109263*^9}, {3.719154921822239*^9,
3.719154984605578*^9}, 3.71915502049508*^9, 3.719155122882633*^9, {
3.7191551798782377`*^9, 3.7191552039642963`*^9}, {3.719220329699939*^9,
3.719220341219013*^9}, {3.719220446784474*^9, 3.719220449576291*^9}, {
3.719220560805718*^9, 3.719220562269841*^9}, {3.7192206894997187`*^9,
3.719220702242868*^9}, {3.7192283219464912`*^9, 3.719228323121888*^9}, {
3.719228990474354*^9, 3.71922904808153*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{
GraphicsComplexBox[CompressedData["
1:eJx1nXuwZFV1h0dtFBHLqJ1AYtmSmYahYWhgpm3oNHZOY09fzz23zj3ggDEq
IT4QS0ESH3maYLSwtEhIiaZqMJKHRgmxYhRREjR2kULRQHy/iJqDisZnfIEG
xWRir0f9vgrnn1XfrPObPXP33uesvfba5/7i059/9rPuv2PHjhcdvmPH/9n1
dWC1Qy7nTqHcBffAffAAPFS+9FT4R/CP4Z/AP4V/plwUuH+uvDoT+gX0+6Ff
Qr8BfQn9JvQV9FvQ19BvgxvlFnzpWcrHnI32wOc/Ee0fKOzPje0K7sDfBffA
ffAAPFT28RD+Efxj+CfwT+GfKft4iPvnyj4eQr+Afj/0S+g3oC+h34S+gn4L
+hr6bXCj3IJ9PDj7eIj2wD4eon0bD6uzje0K7sDfBffAffAAPFT28RD+Efxj
+CfwT+GfKft4iPvnyj4eQr+Afj/0S+g3oC+h34S+gn4L+hr6bXCj3IJ9PDj7
eIj2wD4eon0bD8dgPAR34O+Ce+A+eAAeKvt4CP8I/jH8E/in8M+UfTzE/XNl
Hw+hX0C/H/ol9BvQl9BvQl9BvwV9Df02uFFuwT4enH08RHtgHw/Rvo2HS88y
tiu4A38X3AP3wQPwUNnHQ/hH8I/hn8A/hX+m7OMh7p8r+3gI/QL6/dAvod+A
voR+E/oK+i3oa+i3wY1yC/bx4OzjIdoD+3iI9m08tI2xXcEd+LvgHrgPHoCH
yj4ewj+Cfwz/BP4p/DNlHw9x/1zZx0PoF9Dvh34J/Qb0JfSb0FfQb0FfQ78N
bpRbsI8HZx8P0R7Yx0O0b+OhwHgI7sDfBffAffAAPFT28RD+Efxj+CfwT+Gf
Kft4iPvnyj4eQr+Afj/0S+g3oC+h34S+gn4L+hr6bXCj3IJ9PDj7eIj2wD4e
on0fD9vGdgV34O+Ce+A+eAAeKsd4cP8I/jH8E/in8M+UYzz4/XPlGA+uXyjH
eHD9UjnGg+tL5RgPrq+UYzy4vlaO8eDcKLfgGA/GMR68PXCMB2/fxsOO2tgv
5w78XXAP3AcPwEPlyD+4fwT/GP4J/FP4Z8qRf/D758qRf3D9QjnyD65fKkf+
wfWlcuQfXF8pR/7B9bVy5B+cG+UWHPkH48g/eHvgyD94+77e3DK2K7gDfxfc
A/fBA/BQOdab7h/BP4Z/Av8U/plyrDf9/rlyrDddv1CO9abrl8qx3nR9qRzr
TddXyrHedH2tHOtN50a5Bcd60zjWm94eONab3r6vLypju4I78HfBPXAfPAAP
lWN94f4R/GP4J/BP4Z8px/rC758rx/rC9QvlWF+4fqkc6wvXl8qxvnB9pRzr
C9fXyrG+cG6UW3CsL4xjfeHtgWN94e17/LBpbFdwB/4uuAfugwfgoXLED+4f
wT+GfwL/FP6ZcsQPfv9cOeIH1y+UI35w/VI54gfXl8oRP7i+Uo74wfW1csQP
zo1yC474wTjiB28PHPGDt+/xQ2nsl3MH/i64B+6DB+ChcsQP7h/BP4Z/Av8U
/plyxA9+/1w54gfXL5QjfnD9UjniB9eXyhE/uL5SjvjB9bVyxA/OjXILjvjB
OOIHbw8c8YO37/HDhrFdwR34u+AeuA8egIfKET+4fwT/GP4J/FP4Z8oRP/j9
c+WIH1y/UI74wfVL5YgfXF8qR/zg+ko54gfX18oRPzg3yi044gfjiB+8PXDE
D96+xw9LY7uCO/B3wT1wHzwAD5UjfnD/CP4x/BP4p/DPlCN+8PvnyhE/uH6h
HPGD65fKET+4vlSO+MH1lXLED66vlSN+cG6UW3DED8YRP3h74IgfvH2PH/Yb
2xXcgb8L7oH74AF4qBzxg/tH8I/hn8A/hX+mHPGD3z9XjvjB9QvliB9cv1SO
+MH1pXLED66vlCN+cH2tHPGDc6PcgiN+MI74wdsDR/zg7Xv8sDD2y7kDfxfc
A/fBA/BQOeIH94/gH8M/gX8K/0w54ge/f64c8YPrF8oRP7h+qRzxg+tL5Ygf
XF8pR/zg+lo54gfnRrkFR/xgHPGDtweO+MHb9/jhTGO7gjvwd8E9cB88AA+V
I35w/wj+MfwT+Kfwz5QjfvD758oRP7h+oRzxg+uXyhE/uL5UjvjB9ZVyxA+u
r5UjfnBulFtwxA/GET94e+CIH7x9jx/mxnYFd+DvgnvgPngAHipH/OD+Efxj
+CfwT+GfKUf84PfPlSN+cP1COeIH1y+VI35wfakc8YPrK+WIH1xfK0f84Nwo
t+CIH4wjfvD2wBE/ePsePxTGdgV34O+Ce+A+eKQc8YD7J/BP4Z8pRzzg98+V
Ix5w/UI54gHXL5UjHnB9qRzxgOsr5YgHXF8rRzzg3Ci34IgHjCMe8PbAEQ94
+x4PzIz9cu7A3wX3wH3wADxUjnjA/SP4x/BP4J/CP1OOeMDvnytHPOD6hXLE
A65fKkc84PpSOeIB11fKEQ+4vlaOeMC5UW7BEQ8YRzzg7YEjHvD2/fk/NbYr
uAN/F9wD98ED8FA5nv/uH8E/hn8C/xT+mXI8//3+uXI8/12/UI7nv+uXyvH8
d32pHM9/11fK8fx3fa0cz3/nRrkFx/PfOJ7/3h44nv/evj8fJsZ+OXfg74J7
4D54AB4qx/PB/SP4x/BP4J/CP1OO54PfP1eO54PrF8rxfHD9UjmeD64vleP5
4PpKOZ4Prq+V4/ng3Ci34Hg+GMfzwdsDx/PB2/fnw9jYruAO/F1wDzwAD5Xj
eeA8xv0T+Kfwz5Rj/vv9c+WY/65fKMf8d/1SOea/60vlmP+ur5Rj/ru+Vo75
79wot+CY/8Yx/709cMx/b9/n/8jYL+cO/F1wD9wHj5RjPrt/Av8U/plyzGe/
f64c89n1C+WYz65fKsd8dn2pHPPZ9ZVyzGfX18oxn50b5RYc89k45rO3B475
7O37fD7V2K7gDvxdcA/cBw/AQ+WY3+4fwT+GfwL/FP6Zcsx3v3+uHPPd9Qvl
mO+uXyrHfHd9qRzz3fWVcsx319fKMd+dG+UWHPPdOOa7tweO+e7t+3wfGvvl
3IG/C+6B++ABeKgc73v3j+Afwz+Bfwr/TDmeD37/XDmeD65fKMfzwfVL5Xg+
uL5UjueD6yvleD64vlaO54Nzo9yC4/lgHM8Hbw8czwdv38fDwNgv5w78XXAP
3AcPwEPlGA/uH8E/hn8C/xT+mXKMB79/rhzjwfUL5RgPrl8qx3hwfakc48H1
lXKMB9fXyjEenBvlFhzjwTjGg7cHjvHg7ft46Bv75dyBvwvugfvgkXL0r/sn
8E/hnylH//r9c+XoX9cvlKN/Xb9Ujv51fakc/ev6Sjn61/W1cvSvc6PcgqN/
jaN/vT1w9K+37/3bM/bLuQN/F9xTjv5z/wT+Kfwz5eg/v3+uHP3n+oVy9J/r
l8rRf64vlaP/XF8pR/+5vlaO/nNulFtw9J9x9J+3B47+8/a9/7rGfjl34O+C
J8rRP+6fKUf/+P1z5egf1y+Uo39cv1SO/nF9qRz94/pKOfrH9bVy9I9zo9yC
o3+Mo3+8PXD0j7fv/dMx9su5A38XPFGO/nH/TDn6x++fK0f/uH6hHP3j+qVy
9I/rS+XoH9dXytE/rq+Vo3+cG+UWHP1jHP3j7YGjf7x975/7ujrqj5+/XzPl
+Pn7/XPl+Pn7tVCOn7/rl8rx8/erVI6fv+sr5fj5+1Urx8/fuVFuwfHztyt+
/t4eOH7+fsX8wJ93iv/fdsET5ZwfZmfKOT/s/rlyzg+zC+WcH6ZfKuf8MFsq
5/wwfaWc88NsrZzzw7hRbsE5P9Y254e1B875YTbeL2b9Yj9078NOlPP9Ynam
nO8Xu3+unO8XswvlfL+Yfqmc7xezpXK+X0xfKef7xWytnO8X40a5Bef7ZW3z
/WLtgfP9YjbiN7N+OXfg74JhM34zO4F/Cv9MOeM3u3+unPGb2YVyxm+mXypn
/Ga2VM74zfSVcsZvZmvljN+MG+UWnPHb2mb8Zu2BM34zG+srs345d+Dvgntg
2oFyrK8jLwv/GP4J/FP4Z8q5/rL758q5/jK7UM71l+mXyrn+Mlsq5/rL9JVy
rr/M1sq5/jJulFtwrr/WNtdf1h44119mI99i1i/nDvxdcA/Mfh8pZ/7E7AT+
Kfwz5cyf2P1z5cyfmF0oZ/7E9EvlzJ+YLZUzf2L6SjnzJ2Zr5cyfGDfKLTjz
J2ub+RNrD5z5E7ORXzXrl3MH/i64Bx6AYTOfajzGfRP4p/DPlDN/avfPlTN/
anahnPlT0y+VM39qtlTO/KnpK+XMn5qtlTN/atwot+DMn65t5k+tPXDmT83G
/oqxXcEd+LvgHpjP7QEY/U6b+ytmx/BP4J/CP1PO/RWzc+XcXzH9Qjn3V8wu
lXN/xfSlcu6vmK2Uc3/F9LVy7q8YN8otOPdX1jb3V6w9cO6vWPuxn2rWL+cO
/F1wD8z3Np/zQ2WOA9rcfzU7gX8K/0w591/t/rly7r+aXSjn/qvpl8q5/2q2
VM79V9NXyrn/arZWzv1X40a5Bef+69rm/qu1B879V7NRT2FsV3AH/i6YcTrj
Nr7n8R7gc4DjgDbrLcxO4Z8pZ72F2bly1luYfqGc9RZml8pZb2H6UjnrLcxW
yllvYfpaOestjBvlFpz1Fmub9RbWHjjrLaz9qLcy6xfyGlxHc13GOJ3zmP2Y
dVPwT/HnM+Wsn7L758pZP2V2oZz1U6ZfKmf9lNlSOeunTF8pZ/2U2Vo566eM
G+UWnPVTa5v1U9YeOOunzEZ9pbFdzFMxL8J1NtddjNMZx/E9zuc45zH7Pesq
4Z8pZ32l2bly1leafqGc9ZVml8pZX2n6UjnrK81WyllfafpaOesrjRvlFpz1
lWub9ZXWHjjrK639qL826xfylMyLMc/CdTfXaYzjGcfxPc7nOOc9+z3rrtVm
/bXdP1fO+muzC+Wsvzb9Ujnrr82Wyll/bfpKOeuvzdbKWX9t3Ci34Ky/Xtus
v7b2wFl/bTbOWxjbxTw186LMszHvwnU613GM4xnH8T3O5z7nPfs9z2Xg/rly
ns8w/QK6/cp5PsP0G8p5PsPspnKezzD9lnKezzC7DW6UW3Cez1jbPJ9h7YHz
fIa17+8L7Btxn4J5ceZZmXdjnobreK7jGMczjuN7n899znv2e57DUhvvizjH
Cf1+6JbKeR7L9KVynscyWynneSzT18p5Hsu4UW7BeR5rbfM8lrUHzvNY1r6N
B+4bcp+K+yLMszPvyjwd8zhcx3MdxziecR/f+3zuc96z351p87ym6fcr53lN
sxvKeV7T9JvKeV7T7JZyntc0/Ta4UW7BeV5zbfO8pllwnte09j1+wL4x9ym5
L8Z9FubdmadlHo95HK7juY5j3M+4j+99Pvc579nveY4b+v3KeZ7b9BvQlcp5
ntv0lXKe5zZbK+d5buNGuQXnee61zfPc1h44z3Ob9fgBdQPcp+a+KPfZuO/C
PD3zuMzjMY/DdTzXfYz7Gffxvc/nPuc9+z2/8wD9Ujm/92D6ErpN5fzeg+m3
lPN7D2a3wY1yC87vPaxtfu/B2gPn9x6sfY8fUDfCOgXui3Oflftu3KdhHp95
XObxmMfhup/rPsb9jPv43udzn/Oe/Z7fgYF+Qzm/B2P6Tegq5fwejOlr5fwe
jHGj3ILzezBrm9+DsfbA+T0Ya9/jB9QNsU6FdRHcZ+e+K/fpuI/DPD7zuMzj
Me/DdT/XfYz7Gffxvc/nPuc9+z2/EwV9qZzfizJ9Bd2Wcn4vyvTb4Ea5Bef3
otY2vxdlFpzfi7L2PX5A3RjrlFgXwzoL7rtzn5b7eNzHYR6feVzm/Zj34bqf
6z7G/Yz7+N7nc5/znv2e35GDflM5vydn+i3oauX8npxxo9yC83tya5vfk7P2
wPk9ObMeP6BukHVqrItinQ3rLrhPz31c7uNxH4d5fOZ9mfdj3ofrfq77GPcz
7uN7n899znv2e35nEvpKOb83afoaum1wo9yC83uTa5vfm7T2wPm9SWvf4wfU
jbJOkXVxrLNi3Q3rNLiPz31c7uNxH4d5f+Z9mfdj3ofrfq77GPcz7uN7n899
znv2e36HFvot5fwerem3wY1yC87v0a5tfo/W2gPn92itfY8fUDfMOlXWRbLO
jnVXrNNhHQf38bmPy3087vsw78+8L/N+zPtw3c91H+N+xn187/O5z3nPfs/v
VENfK+f3qo0b5Rac36te2/xetVlwfq/a2vf4AXXjrFNmXSzrLFl3xzot1vGw
joP7+NzH5b4f932Y92fel3k/5n247ue6j3E/4z6+9/nc57xnv+d37KHfBjfK
LTi/Z7+2+T17aw+c37M36/EDzw2wTp110ayzZd0l6/RYx8U6HtZxcB+f+77c
9+O+D/P+zPsy78e8D9f9XPcx7mfcx/c+n/uc9+z37fuwjXILzt93sbb5+y6s
PXD+vgtr38cDzonwnALr4llnzbpb1mmyjo91XKzjYR0H9/2578t9P+77MO/P
vC/zfsz7cN3PdR/jfsZ9fO/zuc95z34Phm3B+ftw1jZ/H461B87fh2PtH9C/
1y+eU+G5CNbZs+6adbqs42QdH+u4WMfDug/u+3Pfl/t+3Pdh3p95X+b9mPfh
up/rPsb9jPv43udzn/Oe/d7eh83fl7W2+fuyrD1w/r4sa9/XFzg3xnNKPBfD
cxasu2edNut4WcfJOj7WcbHuh3Uf3Pfnvi/3/bjvw7w/877M+zHvw3U/132M
+xn38b3P5z7nPfs9f4+e2vx9etYeOH+fnrV/QHV+8Zwaz0XxnA3PXbBOn3Xc
rONlHSfr+Fj3xbof1n1w35/7vtz3474P8/7M+zLvx7wP1/1c9zHuZ9zH9z6f
+5z37Hdn2hU4f9+mtX9A7/OL5xR5Lo7nrHjuhuc0WMfPOm7W8bKOk3V/rPti
3Q/rPrjvz31f7vtx34d5f+Z9mfdj3ofrfq77GPcz7uN7n899znv2++o+bP4+
Xmv/gP65XzynynORPGfHc1c8p8NzHKzjZx0363hZ98m6P9Z9se6HdR/c9+e+
L/f9uO/DvD/zvsz7Me/DdT/XfYz7Gffxvc/nPuc9+z1/TzfaPwDrl3MH/vs6
J8tzlzyHx3NbPNfDcx2s62ddN+uAWQfKOkDWgbEOiHUgrAPgPjD3AbkPxH0A
5oGZB2QeiHkArgO5DmAcyDiA7wE+B3Ic3Lh1xxfuPLtYrXlQfOq1u5/wpu1i
9dQnXX3MwdmguPKt555xbOn+YXH6A67/8FFVsfrCkR8/89f2DFV/qH//6FHv
/sxzn12sDjvtt6/71L9FfeTqvP+54txLn747+KwdN3z8vfXe4sojLnzdo/YV
q80T/vKii289vjh7MTz788fmv+eHb733ky89pVj9x3vvfsqDbjqpuKl9xB8c
fnz+e27/9MGnnHN0sXrH2/a969pTTlX9oX/PJQfv+kF91dju7xc7H/XAC+69
YrxajI+89Z7H9OEfFS///ke/WzzotNVP7SvifMfqgm89fuPHr90VXPz3Gb95
7Qv7xUUf/MpTLrt4vPr313zoXUd+bldxy1Mv/NNnLLM9v//8l93xvmtv3hd8
6+HnffZ+jx0V11/z+U+/+Fuj+P+e8/Xzrv7qm0eraz/5njM+tn1CceB+J71i
5/vcPyzu/snfvu0Bj3jsam1PUf2h/6+27/NrtLrtP/c9frB7d/BVD7ngvOc+
b29xziVf/cnT3rJvdW370Xtv/JXji5u+/LufOvjMffHv2fHkp/7+amPf6n5v
v+GHl16xp/inyeM+cMcte+Pf81v1Nbve8M29q5/ai05R/aF/z+XX3fHg132w
H3/fVUe8+6Z/eHV/tbbJ193zV1e/eYz7D+lPPWH/se3rd69+/rV//Yhv1/bz
29FfvX3XJec++2m7g3d/6/0Hts7aW5z22d0v//U37Vw9/4btw/9l67jiyju/
8aU7n3TMam2PDf8Hdn36967+zN7w3/WxV73k41/ZEzz+41c+9KEH9hVXNSfe
dvft3s6g+PozNr5/ZLHb7J7iG8bdP7/hId9778l6/6F//4VvfPT+R//M8cWt
J/3G077zgzyH+IlXfu2ui27eXbzxXbuvuvu6k/z/Ef6fvfGIw8pH7y3uefgL
jn7ri/bEn7/zM5f/xVsecFKxedwLzn/ijwfFP//9k7/4sD85sfD++M7NFwzv
+tgJxYNef+uFh/3ZKao/9O95g7Q3Kj63ueeOg+88qXj17c952HX9Ufw9t9/2
tQt++cZdwQ97zXevOuPlxxa3/Oh3PnHmaScXp3cuO+E9t+ws7nncv/avf6U/
5/tx/w+vv+ztdzxuX/AjD75q6/ydo+Ijh3345H/cOyyOvveoC9/w5X3Qj4rv
P3tH9eLnnB7/3ztP/PbfffknpxXjax5zzd77n1h8Z3bOvvEDT4+/95JvHnHU
ly4+vXjMsV/7yGk7T1b9of/vHz5v386DN5xevPTKWz93wfvz3OaTXnTeCy9/
1nHB59z84Zsnt+0tvnfF37zkR7/6S8UvtO/oPHjzuOKzX7rn2J+7LM951xd/
cc/RL50Uz9o1edOH7t1TXHbuE6rbnpnngh9++RXv+MaFk+K/XnBJ9cijTlX9
oX/P/wLBO33t
"], {{{
EdgeForm[],
GrayLevel[0.8],
GraphicsGroupBox[{
PolygonBox[CompressedData["
1:eJxNnXW4lFXXxqfnoIRKd0p3dwqIiCDdrUh3iEi3gjRINwhIKB3SipQ0UhIv
oCLSSIrfur/9m2vmj3XtvVfHvZ95hsOBjK271u7i83g8zRJ5PH5bKxhVNMpo
lMMou1E1IxN78hu9wT6hUT6jIkZFjZIaVTV61ygb5yQx8mTw5KMAfrIaBY3e
Ri69YvDFq8K+Kj5D6GdlnxX+2/ADnJVz2CizkWrLBC8OfnyjPEYJqDEOeXGj
5OTgxzYzsbJhm4V4AfxKx4t+FvgFjd4yehN+ZmSKm5vYOejre6zZ6d1Koy+M
xhqVIKdG6HUw6mg00aib0QRI+65GzY0GGg0yGmzUgv1X6EmnkFFi8uuOr0nY
yb4Z6yDsE2NTmHmo9srU9A51JUaueddBvyCzT4LsXWrMxtyqMNdk9Ds5Pivh
tzKxssScs+BXfS3AvhC1FID/BnOphD/VNtmoB33Py9y1JmQvzGcwKm+UnlXn
D/ErzBalnvpQA3hVqaUd+0+otbVRG4+7S5p5LqP3sSsWY9sOG1F7bHOjW8Mo
tVEqo1KcP6COlB6Hj5Loyn91TxRPwkpN6pRNaaM0+FP8hh6HrRL4SuFxmJR9
TuKVRj8lcVKRWw1yqE7ciH4q9PLRW8VuRJyGxG3AXvGSI4vkkYL41fEZj/U1
1lzs45FrTvJ5HVkiYmtewsxHHoeb+OjkxjYO+1zw5bOux+E0gnWd6+HjY/x8
zKy1F86Fv9roS7cIfa/GLOvDq8e5GvPthf86zL8KvuvAVw56/mbwOGwKy22p
STELEPcd+B9Rdy1q170W7nuw1/NhImfZCdfljVoatWKenY26MJtPmZswOdpo
DPt2nPtSWx9kY6lPft7HVwN0+kL94NXDTjLhS7hpCmnfxOMw1MQTxbzy+oC1
K3s9p8rgo5xRWY97XrWgrnLU2IoeNsavcCaM6TkqnHUi5+rIGxO7M/xO5NaM
WB3hVae3Peinntkd6EVD6lUfE9iHQ16jhEZpjNIavfQ4DPRm3hntQySTkddo
g8nPGG002m+0xGgxvLPwtW5iP9LsR3kcfpZg86PRr+hIdx98+RFWRqIv7IwA
Px+xH8mM2+G3Hnn24dwO20+YfXtqbch8x9IH8YVn4a2n0TCj4R73TJyKT/Wg
IvNpzbkO+r2JXRdZBWY52GgIM27JjMthU5t5tEJnKGsrdDXXAcxzCjb6bJjh
cRidTk3fGK2g5unIpPM1tY4DH53QH41Nvxjd5fDVs8+JqdhdsB3PXqs+n3Xf
hD3h80tidMJWn83NqKEFPeiCXVdq6EntHbHvRL2fEbcZOchff/iNid+ZeI3J
IyJvAk/PFWFdOP+UPsxk/ZS6FfcLYmvfgbMwtdTjcNUf/5+Stz6fdJd1j/XO
oTvcDX5X4taEJ8xM8zhctEC3OTrdyK+MJ/r+sowZjCL2Ungb8TOV+U5jxtM4
92aWo7EXDvRONpZZr2C/ivokW2y0xOPwLZwLr0OJIUxPYe3Jvg06w8htGXm2
wq41danfep4L33ovSedxGC+A7GdyXc48thptM1roiWJftW32OEweRP9n6tD5
EDqb0FsBT3V9b7Te4/A1FL+LjLbgL6L/Db5WexyehCVhbo7H4W0uq86zjGZ7
HL6+xUb6X2G7Bv15Hof7gTE+tnqiuJN9f/x9ySxWYT8ev19xXks+s8nhS2KP
gzcAf/rM/I661YPD9GELsRX3qtEVI6/Xxe5PTneMjhj9jczndboPjO4bveV1
+8S2PoQvns7XbO+39X+2XmCGinfZ4/n/LxdXsEuCrQ8b+T/L7IRr4egnowMe
h/ef4A1lbsLbYtZF6AkLy/ERuQfLkC2n5hn0QFiYAh42sF9P7KnwNuJLfobH
xNxv9KPH3ZOp2Eo/QN2qf4HHPdvme9xeeBOG//I4fN1iNqeIq/U0+1voqB7h
8lejc0bnyf0cvM3kd5tZacZ7jPYSby+9WYjuOewPkYfshKEdRj+w6iwcHfM4
vP3CWfjY7nFYEzaOsl/FeS02x5m5Zn+RWLfJ7Sj+VuNrhyeKY8WfC38WPn4h
h9XEOsp+J7qyEc71Pvgd/VHcrdAWeLp/+g44kFxXkc9h9iuRz2NeX1GPvmeu
w/8EeOvYD2G+mu1M8p1FPprrZHKaiM0gfMtGOBe2zhg9ZZbiCad/GP3pcVgQ
ptYzw30eh72z6G9CX7o/s95ir54fZMZn8HMaP3vxtcQTxfJPxD1AXhuw24+O
9G8a/e5xuNfdfeRx91d3V3dYmE8KX/JnnihOE/DOKIzqflwnD8ml95z8X/O6
Gl73utxvwXsd/gXm+cLj7stJj4v32OgfaoyPrWzO4Vs2v3miGP+Bs55Jep4J
t/c8Dl969t1lf4TzD+gKd8ex0TPvCrzL5PSSHC95HI4vgouLnI/i+xfiHWN/
l/Mv5LcdH5fIcwe9Vr0nPO4+/UWtt1nVY71HpPW4dwe9p+ej73pHEUb1fNd3
K72H6DM5DbqySccqH3qP0fddfS/WZ3Xk+4c+a3RfvsW2NPb50K+JfTn8CavC
0RNwIzwJR0+Rib8PPNzgfIZZCg/xvG7+T8GJsPQH/D/p+XlmfB1fe8HGY/AQ
Nt04r8NuSnD5lDz2E/cf4p7Gxw1kj+i5er/b47C+B/8R3CmuMK1n/2P4Sdlr
TUYNucBxKq/LV3mIlxt+Hq+bo87yFfQ632/Y+qbX4SM3OtJPia/I/dE+tdEr
2/8Hbu5iL9vL8PUZLDz+C75eseqs+ynM67no5bPaQ3xhXn4SkEMesHUHu0Ts
xfuPeJEc7iB/Cz/ydxee8vstJpeXzDUNmM7Dd07VqPokU156X9jlcfdQ84nc
iwQ8Zy7i619WnXU3s5s8B5iQ/U786V7rPt5nnns80feS3cTaC/9/6D8g7m70
pK/vvOuNToNbYTqF1+FQmAvZWpLZpWTON8CRcJITrKShVtUcD/5r4PgmuJad
7EP4ekqsG8S5CUaFQWE8udfl8w+85PBTwNd5s9d919Z37mVGS41+gi/eOaP0
RhmYcwFbC4IRzbIAe30eZAHLilXUqBiz1Ew/oA+l6IVqrm70Pn6FhfTIU6Mj
WQ3uSE70cxFXWMrPPj95pOc+pLM1Mzn5yPct8tS7aGGv+8wq4nV3Ngm6makh
F7EVtxC28pGPuMK8cKY/D1EsD/3JyOqhpn/JRTnlxzYfvUlK/NTUXNqoDDgo
zYyzgaPsrDpXM3rP6zBd06irUTejstg3N1prNMHoK6NpRr2NphoNM2pj1Nqo
uNfhQBgYYdTWaDh60u+F7jD4JdAvTm5ZyScr5yCzykPfmlBXSWafB3lezjWp
vTQ1J6MnRbFJScxixExODOHrba+7z5HepCS3Evgphv7b5BekluHU+TZ+NGvh
Q8++TF6HIc3pQ/ZaazNTYau8UX1yLIJ9ZfxVYdVZOO3kdRgaYNSUfshXHa/D
kmSd6UkTdErB74RM8SoQvwD2BeErn3JGdb0Oo3XQjWBQGK9Hnu+Qa2Z49eEr
RhdyqMlculK3+lAL0l64FZbLEjcvNvngSRa5D+XIrzBxklBfaW8U6828Dq+N
mJtmLDy9y0yrsb5LnFrEKkO8tFAaeInpg2J66IPm2hj/jZhxZmYu/bewyYRu
RnKoStyq3ijGhamG5NmVXnVhdiWJU5o6VVtz8mqG3gf0WX4a4CtHTK1ViBeJ
VRS9kuQv/x2MOnrd/W9ITcWxiWCwj9fd+elGU7zuPvfiPMOor9fhqIdRT/Yf
chZ+hK1WXofjj4w+xka51KeegdQ3x+hzr8P4e9TRAXv5aYnsc/oivI0zGg9f
vfvM6/DSEpvu5FOLnD6E15Z8hGU9vyqSr86VYuSV4fUhb+XcibidqVd16760
ILbw1I04tZD3QqcV8Sqg24Jca2Ij/XrEq09tXzFzPYO7chaePjFqT82aZ3+o
MbMsGjC/RrWMtvrs+6zReaPUdi5ilMboWMjeRYzWGu022mV0NeR8RzAr+Tp0
rhn9z2gP5zUh50P4+ZS4n5KH9u3Isypza+aNPr8ak3tn6uxCbV3ZN8NmIHMQ
doTJL4y+9DrsNgRL/YhVBb0O4Kc9dbTnXBWddtj2I99++OlL//Uc7A0OhAc9
7yeBIc11KLMcwnzFn8wshyAbSS4R3Os8yuhr4s0AR6upvyc+plBbB2rVvRC+
Zxv9YDQXXmviDMWuBzkOJo8WxFYNI/Av373Al+qbxn46tY8gz4+I+RlxFWMY
MScSpzsxdHcHsepclviD6UU3bLqjNxi98dS+hnrmMu8Z9Ef5jGF2n+BH2JgA
T7KxzG+m12FuNjnPgjcLfjfsJlK/5qv7WJGa2sTUILzVoz990JG8Ery6+BBe
9FzVPR1NPp8wa825HbXp/ekr6l3Dfi5xIvjWeZ7ROvJci692+F5l9K3X4b49
dXegvs+o8Qt4Y7FpRx7qz9f0I4J1nfXnVXP5DqPPcz3nKlOn9vps03v7Fmby
vdfhbBJzXeh1uFhGnJHUsNNoFzPVPHaQ9xfU8QMy8RfhYyEy6aw0OmJ0lJov
41N268nhe3JYgO0CzoPxqZ/vDYOGwhPGN1GT9tM46zuKcL+E+fxidMzr7spk
Yn5HTNU+kbP284k9GP4EZqjzIORT8LGBWMu80WeB9supbx44uEL/xNtmtN0b
xfM29g+NThg9IMYg7G8a3TAK+RyFfY6XwtaURk9tv8LrMCK8PjFK7nNy7f/h
/AQb6X+DzRhoNDzlIxxtxd9K5reduc9iZjupSz097nXYXk2f10DH4O/Adjsx
RtOfmcTZRt+WI9tKDlsg7WeQzwpyUg9+pzcjmbXmMJyZ66zvqAeYh/C0x2gv
awRf+u56njibOWt/x+iu1+H1B2r4zeuwK0wLy6fBwClyOhwjW8X5Mva/EVPx
F2EjW+FvHzzJNuBXPw8XXoSbq16H/UXoqr4fvdHv4Us56y9rXSGmsCzMnmCv
9ST7k8RV/cLZbmgPvJPk9z38+eQynR7NoK/L6a3mfB8czENXNgeNDjGzi0aX
wMBxcltLXuvgLWZ+ke+Ti6lV91n3Wn8fYBu+ttMr8fT+OoXzVHjT2Cv2N+Qi
W2HrAvsLMXntwOdv7MUTlu9R32VmsZPzPWoWPSD/ldR7mN78HBP7G87nyWEL
OgfgX4B/Hh8ryf26UdDn7r/wHmf7P2yNx6qzMKs/h3lm9D9vFON7OcuHdP8k
3ltmk9jn8lauf3sdZu+w6pzI5G/43B3Q80OYfGz0Hz16Bf1Gry6zl1z4eeR1
GHqEnfbXyEe5ncGvnkmqbR95PqUW/b2OH6n5J2r7FfnRmHz3YrePuMLTQ2Ls
JuZJeMpF2LwaI9vN+TE1Ks9zxHsOvWAuHv4Oi3CgzwXhVvfpIvN7yew077+8
7h1A90HPcX0Pjfy5oz6L9X1S7yD6Lqp3j3rsC3GW/W381YGv7/UZsYt8T9Va
iRwU/19slcMtr8PWLc6H8fk362H8Z6Qu1Sc8v+lzGNH5MjO9B/8+sf5l7i+p
/QV0gV4p7p/EPkcfz8OT7AA+XuHnD+b8O7Kf4AkDN+EntfjJfG5WflsDPoen
R8geEyeVvg/53P4Z5z+90XuT3udqekUvEtg5oc/hSD513/IbFeAOSEdy4S0D
tumJLxvloM9X4TkZOV0jxxB3N0ju/4A15aTcUvIZrv1T6tRnm+51ImIm5K4K
28fxK/8+n6s9ic/VfxXeNXjCfGLuuvYP6NVD5B5qUU3qy2v0SbMvaFQIn8KG
D4zofIXZpbVzOp/DkjAX3+f4L5HpLP7r4OYt6nhCrbrjZzhrf4NZ74ev+/gP
530x8h/h6S7oO3dFcPY68RRbOaTxOWyrTtWYwBfFvp5r6q16/Cb1Kr+KPvd3
1WSXBj8vqFe1CjPq0y2wnBq9F8jToxOfeLfJTTavg8nU6O/mu7e+d+tnCAv4
uYF+VqyfMelnSpqrZlWEGWstapTF53CQGRz64SVFnoy1GHvJ3kZXeMprlI+5
ZsKP5l3HqC74ywEulG8po9L4COKnCLkVxk9m8pCu8F0SSgXGc+JPfsPcjWxG
JdCTTgVmVZ4csqOfnXOYeEnAdQrsU5KX8stK3cmpvTj7YuhkJXZeepEAHJdj
fmV9DkNlmFkuo9ysOr+GLC2zT4eN7PP43Oxzo5ub89dGM40+xT4e/ZhstN5o
itEQo7ZGbZhDL2aRjlhlscmFj9TMRDkItxnpn+wrwUtN/0vR0wzUqOebsJ+P
HuTzRT/zEyHPiH4F4pQh1odGtX3u+ZiA+vJQf3n856G/ko8yGm3UgXlnZ44p
mIvmU9moCvMTbhswL/GF3XfgNYT/NvzK6NdHrn0RzjWpS3nUgy/sVKeP7xk1
oTfCXw54khWi99LPTPws9FVn3Zmm2MpHNV8Upzk4y9e77MXPSo1VyUv51TJq
jA/l0Ih+NKSGIuReAr2SxK9ETlXw+zb5CjO96XMImebSktlobcVe2HzfqAZr
BOOadTPm3cLncNfc6APmWgPdGpybo1OGmRYn39L0R33S87VOTF/r0duK1JKJ
PFuQYy7mUJ1cmuNfmBM2hcE22LcmVlN0da5AnfnocX7OFai9Invp9jDq6XOY
rk4vchEjP/blqLEFfdDs8kJ54JWgds2wo89hfgyrzsJ/A+bal9kJvx9D2n+E
juT9jDqRU0dqU439mfMkZt2DXLv7HCY+wpfy7gZ/MLUOglrTjz7kU4+Y9eH1
Zq1H3sJyBNMdyKc/+XwKad8EnY7k3Y081C/hvp3RJ9So+hpSezv60Q497euS
h3JoS20R3Lelzmbk8RlxutOL94mv/glPnxsNZN+Cs/Dbhdl1ZdW5iN+eS0aF
jYJGmY1Cfvd+IPzqc+esnX8w2mE0AJ/C6HY7n4F/wOhno2+NVrPq/Dn6A8ih
M3E7sVfubZiR5labmjTnIcjEX2g0FF5v8KDPkwlGE30O0y2puxU1dmMWNWPq
HggmWtHHAdTSjHNz8oo8JzT/9j73XBcm3uXcHlk1ZjzCaCTrJzGzH4nucGTt
wILwN5Xzx8g705exRuuMvqO2fuhOo1715iv0vsButtEc6hFWhuF3KOe2xPgY
2Vhi6c7qs1q4+pQeaD8L6o/8M86K0534yqMjPjrRo/bU/BGxFStnnMczw9Zc
ce6zX7X3YbbKqxL1iS95xjj3XMkQ5+bag7qHgIUFzFHYmste6zyjccz5S87z
mbf4430OE93QEU9Ymkw+7Zmv5tYFH9KrCu9ddKegP4Qa2zKHLsxiILEHwfsC
X3r32YC98Ps9/oTtRfhaiN8F9Hw2M51P7fK5F/2F6A1GPoeeDMDv98ScC38O
sxvP/MZzVj/0bNLzXO8b+vzORr1ZqT8bs1zsczgSFjcabTJaAk8y/YxOs95M
rVOpdxp72YxAX3ZLfdF7sxnb6fAkWxajN4J4m2N0JBfulrPqvN3nsLrN595F
9bPDmey3cP6aWDqPjvEh+gbeNOJNx2YbfmbjX3HGoL+CNfIZuA2dmfAk151b
yarzaaMz9Gk2/nYw333MeDY8zU4YWmX0LavOwtZqozXMU7o/oL+T2f8AzYU/
j73ku4x2+xx+ZD8Of18SJ3Iex3keNvOJGcGRchYe9xidMDrpc8+vr9Bbi2wB
8Xazn4+O5BOoJ9KndfDWcl6FfCL8db7oHZDv6/RNuQj3p+jx9+zXk3+k7vXI
1f9fqPMoMz9r9CvrRuYkfO/3OTwuJpbOP8Lbj+1G7ITFn4wO+Bx+l6B7Bp0N
xDjnc5jexHkzdsuwU103iKeff2/BZhm+hdmfWQ+wP+hzeLxgdNHn8PhNjO5W
fF0gp5+ItRXeNuy2s1+Bz0PE3kKeB31R7K9ArlldwvYieatfwvNh5NLbgY50
fzO67HM4PeKLYnwHMvHXMKNf8HPEF70PR5jdFeZ7mRnrfBWbY/jYhc4V9Hbi
/1t8rMbmms/hdBdn7YVp4e4EpP1xfK/1RbF+DP7/fA6b16A9+NkRU/dadNdR
z0rq24u+fDw0euRz9+o6MvH9focN8YTlx0b/+BzeH8PT+YnP4W4Yc9A8Ivh+
avS7z+Hgps/h+KYviosfkf/hc/j6Keb8EzWolpfkqb488Lm89jP/4/Ak+9vo
DjNLavkn87v8DuDzT+xukMcT8jyDzWF8/M3+ttFfPocp4fGWz2H8T/Z/wff6
Xc+ukbPy/Re7v/DzlFhP4N8mxnOfuy/PyPNPYjyDrzuhe/PC5zB/nfn49C5t
lNjv5icc/Wekf0zgns/h8q7P4e4uZ/Hv+xyGjsXwZHsFez0/9HmqZ4i+i+l9
Sd+ZX/miuNbntz63qzJzzV7vGIV551fff6MHl8lJPbrGfI7Sb2EsAM6EpSR+
N7fH7MU7yWwf4u8VPn30XH7l5zq849T4gHquYJORWNI9Sh530Y3cs6vkeo2e
P6fvB5nJLfjnkanOp8xU322EXX3Xucmqc3J0pCsM/o6u5hy2Nc6oRJzzV9zW
BH6Xl/KL3LEz1J7a72oJY/8HvsL+KL7lL4JNrfH8zlaYTOV3uHvd7zAu2Wt+
p1vWYqe0fek4x4tgX6vOr5OX8kvod77kUzbxiBlHLMmUa3ziyFb1aB8ffgJ4
0ktDXY+Ys3CdkVllYPWxvw9mE/kdvQFPc9O806In/fT4/g8MKP+E3I90yL34
eAAW1O+kPDfEk+xNsKO53iBWOmzFC/AdV99Zz/K9VTpp/dE4PvSF64LgPC25
KceKRpmoOyk6hYzyGxXgnici94ToBskrKbrJqEP5PgSD0svMs+IhsozwA9gV
xvZXv/s+rhr0XVvfsw/63XfwVUY/4esdoyxGZaghDZjIZZTbqI1RJWqS/zpG
dTkrdgX2lcgjIXaqr6Lhr7hkcc6mHvklpob89KYOvl8Df9kg7bP6HRazcs7u
dxiUbgmjkn6H25zkLCyWpp40nOMjr+93f5ahPHTPQtSewu/udhFivU28LOzD
rHHss5HHa9jKrijxExKzHvzC1FaX/SijxUZLjD42qmz0kVEf8pPdTKNZRp8b
dTT60qgTvIHwB7GfbTQAG/GFibxG+ZANxE5+vsDXOPx9yfx0x8pD2qfHh3y9
wZzewqfugHBS1uhDo9p+h2nNP7M/ivsM+M6M7B18CRd58J0Pv/JZjrjp8F0O
Kg8/D7a52efF3yDqnON3z5/SzF17PbtKGb2PXS7mWpUZNvQ7fBZDLr0aRi3I
obnf4V/4bm003KgtPM2zl1Fvo3fxVxXdCugXoHfqUx30ZVeCuI3Ya23sd5jK
hj9RNXjqnTBSGX3plqRW1deU2oTx6uTXlr43oM5i2FfxOyw3IgfJiqJXDHlW
f/QOVKEunbPgQ70RBsrQo7Ls+/odhvvgswjnmsw6gkuda6FTn9iV8f8OtWl2
ute66zn80Tscn3Nr+twKnezwS2ErH6k5q0/CUku/w1NL7LT/gHyUWw+jnn6H
6Q+ZXS1mpjnXo6/v0Nve1FoPXlvmlA+7/MRVf1oQIw8xy8FTLsJejRhZHs6t
qFF5jjfqYtTZ7zAvvA/mrLs8jrmrL8PIY4TRSHTk7/2Y2lTrZKMp1LzQaBE2
PdDpTo3TqHMgsZvjrzM5DSf2MPSnYvOp3+FMGBOGPvE7XLdn1VnPwHZ+h7N+
2Ei/Mbb90e/gd/ehWoyPEdTZFvvK+BOehKu+2DfCb2POn5FPO3JoQOyG8Kri
r5nfPVMHUs90+jCc2Iqr33mb73F/z3Qtv/Om32XWn4vr5zn6s/Hj/A7cOn6O
/R3nnfzOXOR3qnfx8+6F/Ox7j8f9HCjydw2+xzbyO67f4VNx1/C7eUMsp6Fg
R9gawr6b32GyJrPrAta6snZhfq2xr8X8P+TcGj+9mG9vsNACPAxmPwif3fzR
e94NXzVjYrbEZgj7FpyFZT3DOtL/psygE3gThoX9uejPxcdgatA9+cpovdEv
RseY3ffwFjK7yAyF+ZHYfkVuVeMcTqrEOZsNzF73JHJvpuJzGhgabTTGaKzf
YXMM/DGcG4DHfpD2M9DX57LwPY78O8PrCH8juspD+BTGR+Hna7/DdgfijIU/
A9lo8miHzcfUOwpZO/zOoMZRyBdT23r48v+e392/9zh3xK4vOh9h+zFn8fsw
+4lGk/zuDur+NWEdwP595t4JXlP4woDuX3Nw0BT5e8SvDslen4ELmO0wYip2
N2bWgxzm+R1mhJ11Rt/53XNwEXWrhoX4kb/5rMPwJYxMwPck/A7F73z2QzgP
hTcMG9l+xX4i/uZz73XnS1NzGXqlHuizTO/s32K73O/woVlvMtrsd+9AylE/
b9uBzjKjvcxQWNV90HvnLqPd0FJ4s/A1m/Ni9I5h9yf7436Hl7H4V5yZ2M6C
PwaZ+ruVPih/YXsl6ypq2U5/tkHz0V9PvA3UN4fcVPc3fvfuqtxHk+8WdDYj
/4LclpLLGHSXsp9A/G9jZqxc9tAz2Vz1u+9JV4zWGK1l3pNZdb5rdNrojtFt
o7+M0gY8nqe2JrL1DaN0AScTP8hePPV4J32W3jO/swtikx4/T/Cl73PC6ELs
tBdvIvlNYqYXqEPYnkK+S+EtI8eNzHIPst2cN9LzydS3jv7sIO4a4q2G9wP8
Cf7oz3VXoyPeYvJUvgGrwR9wv5u1lXnPY14rmOkp+Fvp/SowI/oR3kr0f6T3
27A7Z3Sefu7krP1JoxPMZzs2+n6/32if0W9Gh4wOU7N0N6G/nzgr8HOK3Lag
J95B+rKauL8Seyf9+RX/a2J0DxFL9n/jV7UeoI9nyPMusU4Sdzv1noa/mTz2
08d9rPvJeRzrSuqU/BL+bhNb90z3+5bRRb/Dv3BxgfMedCQ/HhNjObQX3mb6
dsIfvefjsNPcNf9xzFk5zaWGrezncD5idNTvnsvK4TF5aL+bGd+hB+rbZWYU
mZXuq3Cyjh4fps476P+GTUT/MjbK8y9q3EvMS+wvUeN5ctiF/8Pke4R8xQty
d0NGbxq9ZfTc73gZ4Ov3EtPSk3+IpTqvg5H/GT0wes3kD219YXTN755J8Yx3
39a4gDs/j5G/xFb4+xUfcejfQ34NfWErHHD8B+hL72d8HMRGvLP4fEgPlOcN
v8PxOewfUoPm9IgZqi+/01vVqv6eIfY99vfwf58czpKj8oj8nZFr5HSIvK7T
i2voKMYfxLyO7r/U+y9nfU7oM0DvOHo30ruLnnfPwICetfoOqj8X0p9b6F1D
3x+bQNrrs1jfMyPvQaXRa4YP+bqCjuSR7+Q5/dH3J8my0wNhIczngvD5N7w7
4Ogq/p7j+zln2cTFzE6YEFYe0MfI+XXwI1/yrTsv/AvPT6j5MrwAmPyLc0Su
PO+Q1z/wLzFTPTcidzs1uBaW/0HnBTnrDggbCfChNSH7jPQgAxTmjrxtlNUo
PnW8zT65UQr9w8sBN3etXvj/2TkZa/JAVObBxmeU0igV/D/AjvJQPqotm63Z
yU/Y+gms6ZwInTf5vI58br/JHZdtAvLW/VAeN1l1fkW8m+StnsTHRvtHnP9D
Lj3VLn7kOaBeJiY/2SlmYWoqFHAxbnAProP/V/h9hL8s4CMz+tJJyln8eOjq
Luu+H8an8vHSxz/I6VGMjuSRO3+E8w1kh7gnepfX+22SgIup2JmIHY9Zv0aO
kVzfZl4pmF9KcvDS6wRgQ3ciE34iOHhFLD0LErMmIW4ceMsYiMpewM+Ir1f0
Rv7W8bvkJ0IO6/odc/0O+kk7fxfDL8pdegPM5ABTOTgLL7kCbpbSLYZ+baNu
Mfu0yPTZoXfC4kYljEpyV3LhKyexcrDPCf8NbCN26Vllqx7kZQaqs5RRadaM
xFBPchvlYf9WzDkJvEzoy64s8yqD7yTo5sLuLWKUYd6ZOGdGP18g2uuknMvg
Uzp1jOpSz9vEK2dUIODue374WZAJJwUD7l7kRycZq2xSYF8+4HBUIeDuU3ls
UuGjPPys+C/HvgD+5aeG0QcBdxez4Ss7c0vLXDXrWsxUa0ejTvCFJf1bBhWx
i9hXZK4l6XMGbD/ETzL6lJ+5S7cSdpU410b3Q3TEfwfKBS8d/VVvK8OPyCsz
v3oBh5+65FMCXl32xeGLV5/ZVzGqatSQWTcwepd5V0VPvFLo546xyQsvLzb5
8F8f/cro5ka/tVEb/EWw3MioccDhoTozey/gcNUQeRn0G7JvhL7m3sSoKfGr
kUMh5v4+fc+HrDq8gtiVI3Zj9mWJXx0dYSsF+/LoyK4ltan/nZnfh+RRAV1h
QHgRhtobdQg4/FVArxlUEV4nfMlPc/jN4MvHF/Akq4T/Tuh3IYfOyFsEohiq
xLlrwGG8NtQFXjr43Y1aUZfqq4OsO35awC9ED2ug2yoQxUMVZlwHux7oFcZO
557IewUcLnviozX2PeFLpw1zle/vjaYYfReIYlo+hIm+Rv2M2qLfBp3eAYdF
8T8KOAy8x/oRdsJiH3r5JT3sDa8+awP2HwccNt6DPoL3LjGqkU8DfLdDXzr9
Aw5nn9KTTwIOF/3gNcK2H/tP0df+s4DDTBPy/IJc+yNrQpx2zEayb4xWGI0x
Ghtw+GuMTRNif0AuNbBTTsOMhlPPYKMhzEdYEWbGG41jr14JFwONBiHrglw4
FH4/hwbCG4iN9oGgPa+NgkGX8zh8FrJzMqOkQRdXfr8iB63d8Cn/A+jNAM61
45z8Q1snBByeeqDzGXqtqWuo0UR0JlBny5i6W8Prhc5E9lonUccgbNSvNvRv
MLxB+BgaI2vDWfjRsyY/c/uEGfTCtzAovAt/kwMOayMCDkuT4UunL3pT0RmO
3kh0R6DTJ0ZvWsDhrB7x5GcUOURy0Xk0tlPRnx5wuJyGjuTC0Qyjr+nvJvbi
jUEuvf7YykcH+JIvM1oecBhtR84j0ZuB3TRs+xGjPzJhRnchgvWVAYehLzmP
I5cB2E2id72JMYqYqwIOYyuZu+Y3N+CwNh75LKPZAYdf7YW/mUatDGff2too
zskHBaL3Qec5zESzaYvsc3zMJdYc9OdwbmK+VtvaNM7pzCMvrUPZrwu4Z+Fk
6hIm1yKX3nyjBQGHufnUFrm7Q+ENozdfU8skfKyDP5Nc5WchdQzHbgH668hB
8hGBKP50XhRw+I48d1Pa+3cKoxIhl/sUbBcbLWEeo5jNYmYsHGwMOAxKX58D
woywsxS+eOuhDQGHl9HII8+/CNZGEytiux79JcgU/0ejnwIOl+rBZqMtrDPp
lzB3IOBw9iuyTZzF/9loL3XsoRd7OG+grmnoHWQ+m/Aj/4cCDncHqX8T/ZhJ
LrOI9TO2B9FfSU2njE5jO52YJ+mVei+MCFs7jA4bHQk4HG8LOBwKu1s5R3Cs
/XajowGHzyPQamx34HM7+x+IswabX/CzHb012B5Fd34gil2ddwYcvk6QszAl
3O0yOh5wWD2G/s4Y2YIY2+PYb6VnW+CvRTYb/lb0ThJLfnYTczfzi2B6N7M8
RT9l85jzI+pUTXeNfjO6TD2axxlmIWzsCzjcPcL2JOfFMfKl8NYT6xT70/jZ
xIzPGv1u9EfAYVcYFt7342Mf++XwJX9mdC7g8PtXwGFOODrGv6v2S8hh+c+A
w9m5QPQe3MJG+nGmFzbKHnK+zqGzlJjLsP8Tuy3onGd/nv7/jFw+hcnbRn9T
26/UegHd8/R0Bz0+Sx/OYHsIe2HtotEl5nIv4DCjmezEx13mdQdd2WxD9z76
h8nlCH7uIt+JryvksYNYd/B5BH+XkD1k3pr1VaNrAYenE8gi/F34VPzj5LAT
3i7y20o/LpD3NupXHzbgU7YP2D8gxh7i/g/eceJcQ7Yb2kUuf1OPasnK+5re
2/bgQ1gtbufURqmCDpu6D/8EHCaFtZsBxz8VI3tCvqc5a38j4DATwesNbF9S
5wuj6/Cl85TZP0H/JvGewD+D3l7sfoUvu8g9UY66C88DDpfC4OtBh++nyGSn
2p5zljw+OuqPsJYg6PZaEwYdRl+Qd5yd4wXd/ZSd9GV7nrgvsLuN/Dky5aN7
81rQ5eUPup5rVm8F3fzu059/wYHwKCz+F3B5JAq6+V1C55XRG0GH4UTI7wai
Oq+w13NIn8WLsLuE//+QS0934C7+7rG+SR8SElf6+k8BlZdkyls5C8veoMOY
cJnY9kmCTvdKIHqvdJaeD13tE1O7fF2kxy/xIx+PyO1NYiXh+8Qjeic/Pnyq
p9ewfUAeI6h7JHhQ/1/ne4nwm5R7EAo6LGovfOk7jbAsnWTMKhCMYvY6usmN
UgQdToXZcNDhULbJ4f+DD52lo1jSSxl0uEyBj6fg/To4/x94+x2/f4Bx8XIY
5QSLqikXdaXi/j4H2+LnJpZkz4h/kzoky8MdyBt02M2DjxeB6D1RbimJkRv9
POjHR1c2aeiVZhGAL95LcKQY+YzSGqULOjxqfQU2EyJPhEx2aZFLL71RhziH
z/Zxji/ef8xS8xI2MoI1YS4D8vTsM8L3wM+ArviZjAqAy/zguCCY84OzzMgS
cwe82EVkPs5J8FWQel/SiyTYSpaQHuZFrxCx5CcLMbPQy0hPddZzuzA4lo0+
s3OE3Gf4bTv/bXTYaKXRCqNDRkWMioI1Pf+zBR0WhKEIpnQOIk8FbooFHXaT
ETM5vlJgI9vsRlWN3g06XBbDtihxwsEo7rOhH2aNQ784MdWjEkYlgw5r1Yze
Qy6+cJYLfm5IcuGxETrF4VWHXwK/qeHlhf8+e/FKMSfFzQf/fexKIitKXSnQ
kbxG0GEzLT7KBh2mygQd5spwrs3MP4RfGpmwUs6oPLz0+Otp+K5pay9ba2GX
n7UA+3LYZ4QyEL8ssgim5VuYEm4qGlVi1Vl4Kkh+daC6QYerLNhVMHon6HBR
Cf0C2AgL9Yzqo5eZeAXxVQh5YfxWIHYEx5XwW4r606FXGNsi7OUjG7rKpYVR
S+psGHQYakAeDZhV5aDDWDZsKgej+NO+CrrF0JcfYag4OpLnIIf66BRHX7o5
kQv7nxi1D7o7sMRohNFwo/5GjfErzHYIOmw2gh/BuvZNjDoHHa46wSuJTkd4
1YmXg/w6oS9+Dfby0ZSeNiFeB3yUhBfpdyl0a2DXhZm0pWeSNUO3BvIPjLoF
HT67Bh2Omwcd7rrC/4D5lGdGZfDTnNmVZV8LX92hHkGH8fLYt0KnO/xa+O+G
37L46xl0eOwB1Ua/TTCK99acK+JfvivAr8C5Dr56sa/NuQu1fYB9xK4ZtZVG
X3Z1WXuzr0Rc9bRP0GG5N1QPnY/ot3Tqo9fX6EujVUbfBh22IliT/sdBh+P6
6Dbg/E6MvEowinWd2xl9GnT47Qe/HX77wmtAjKrI+qEvfiP28jHGaGzQ4V7n
/shnGX3GWZj7gjo6snZCLhw2hjcOfgf0O9JzYXI8urIZYPR50OFyAHadsW0G
/3NsOiPvwvkr/AxArz8+G2MzEB/CwVDmO8loctBhSvLm6EwMOgxOwL98d+Xc
jb10BwUdPgez6twdnYnoDITfMka3O/JJnIcg7w6vB7xWweg9GULeU4IOs8q7
F+ep7HtyHkZ9Q9Hric/pQYe9aUGH2dbo6lnWFt5U5L2pewL1RvQiWNd+BHGn
ov8es9XzSritR7yRQYdZ6QtXwt/ooMNkH/KSzqigw3FfeDOgr4MOp30590O3
Hfozgw6jX3P+CH9fw++H7ijitmNVHv3RkY/28JSj3q30jjUW2Sx0tc4OOmzp
3q4OOhwK17rLwvt2dKQ7N+jwNwfZt+jLbjz7AejPoedrjNbCGxCM3o05+FqD
7Wpm1SdmXuORbwg6LKwPOuwIZwvwu465zgs6bA4kz3nBKF61n2/0XdBhdR00
EdsF+JxP3LXwJ2HzPX7mozcJ2++wXUhe35PjZHS+Zy/50GAU94uCDoOLWRdh
NwX9odiIL3wKa8LBVHqxEdpEz4bH+BtIX+eiPwWbqdhMQ29JMIp77ZcabQ46
rG6CpqM/ArlwuDXoMCQ8LoMn2Sj2y6Dl8LZgI/0ZnLX/hdmuhj+d+LIbje02
Ym2FJ9k36G/G12h4EZyP4SxsHjE6GnQY3hF0GBwbo6vvG5HvH6vQl91O+vdD
0OH0B87HyFm5zyK3bejsQO9bYq6GN4e4R7ET/xIy5XXW6Ff6rXnvNdoXdBhc
Q0zh6KTRqaDD8lxylM7xoMPyrqDDZwTrOu/GTjg9YXTT6HejH7E7ge0JdLTf
E3SY3o2f3Zx34nMe+XyH74XIZXcm6LB2mlpUx2LyFm89tqfYn0Z/PXUvwt9a
6laO+8l3CTH2orME35JvJPZZ9hs470dnH7Kn9HobvZ+F76X4E57OGZ1n3Yz+
FvbiCYPC9wGji/i6YPRz0OEuglGdDxrdp5Z7+NrMrM9jtxX/59kfwHY5e8X6
iRx/4qw6nuFPmL0TdPj6hpjC9iuj34IOa0fRuUvd28j9Hrn9gq7wuwP9u/Av
oL8VufQuB93dWUG8S/B3YHcP2430fRO2shOOrjOTvcxYPXpg9D9mfA3+sRjZ
w6DD6XHO2l8NOnxGsH4V26XMVf26Al86j4IOsw/Rv0a8h/BPoLcTu1PYPGZ/
kvM+arhh9E/QYe00+V+nrsfIxH+Czj/4eQz/CrEuk6/wehP7Pfg7i+0TZPuJ
exbeU/K5gewi89Cc9Wcg+k6q74XCw79G6UIezy3mJpw9DzpcP6NffwQd7rT/
nfOf8LQ/j82LYPSePEfnFj6fwf8VvZfB6B05gO55ZBfIRbZ/keNFbF6yj+hI
fgidV9SZ3ur5j/Nh5LehQ9iov9LxhBw+E9n6Bnut97CXjnD8Vsjh7s2QuzeJ
0P0PX79h9ya2l8jzX2xkK34y2ycPubkLa/6Qm+kDYiQOOWwKB96Qoyvkqb0P
ufSShBxOH3B+iE/pyK/49/GbNORwmgQf0rvKWXzZBshFtsKjbJKxf8T5OhiU
bjDkMBbBvc4h9JNRY0TvOtgRXsP8HF5YVS+EV51T4k8+btJXD/UnR18+pf8E
mzC6stHcX4HnMH+m+Dv68i0MivcHubwWcriLB0+yyD4eMuExtf7ertHrIYcd
4VLntCGHx1vgV/5ShRz2n2H7HPsX2LxE73XuXGr0U5Gr7tiPYFQ68UPuz0SF
3QS2L2+UgVqlEz8Uld0ORvV1Toiuh/ugvgiPacF6AfCaFr5yE68gfGE8P7rp
8fUfOM+PfUpqfsaspJPR6G2jrMy+CPgT1jKB44xgXdgsRI4ZYzDuRVeUGV5h
fCWB54efGB+F4UmWBX5h9IuSQxF0JA+QZ4BzMvSKsU/KORm85NQUoi7xisMP
xvgrRF0F0ZVNtpD7s+4we9mlwLYg+up5CfjF6a3OJfGTDXudS9F3/bzuED/L
6x+29xejz4wq0E/No7ZRHeIIg8JcaaNq5PQutajWBuSrOqrAF68h+4bkJmwK
x7nQq4qd5I3QqYKfyujlxi4N8cvAl5+cyOPH6EieFp5keUIO03mN8hm1Crk6
y1Or9hVD7u7mwGcOzpG7nZN4pelDKSg1/VTMssRNSa/FF9Y/pJeNmItqbMxe
vCZGnxkNoKft6XE9o/ohh72xRiuMVhp9ZdTVqAurzhOMBhnNNxoMX7xuIYfl
evhZaDTEaAE0BP35nLV/J+RwrftQiXNmKBO8+sy9CHMuCi8Lc3ub2WYLRXFc
lfqysWan/xXxK6zpDhQkZ+3rEi8TeoXh1SPWO8Sri34d5qqZCsP56X8BqDb+
hYHW6L0fcniqzpyrc+5p1AuftTlrL6z2M/qUfQPOqk/YbRdyeGhm1Jz8Po6R
VeGs/SfY5Sbm+9iWxl7nGsjlq0XI4axDyGGkPfI86AjfwnlN9lprkWv/kMOb
sCnMlWJtyr4pcbV/LxS9Bzk5Vyen0uhWg5+DXlakn8JyY+L1Zx+JW4JzSdYm
2GfHXx+jviGHpbZGHzHjesjEj0+9CeiFPp907xLCywslQE940OdQOdZ07Mux
lw/dpc5G44lXifiK2zsmrwbk0I99X2b4biiK70+YS0P63gg/dfFVmbo+pmdt
YuJV4twL/TrotIbfG34vfFQm3+4hd9cnstc6yWhoyN3xheyH4UtYnmw0hbl2
CjmszWZ+s8hvVMjhdDSrzjOoP1J7RN4ZH52o+2ujmez7cf6avXwIzwND7rn1
echhqym8ZvA6M5sa0PvwZKNnVQvqakWdWluyV21T6dUA/Mm/7k7HUBTTHcm5
CXpN4VVHpzn5DORcDR9jmHNk3jqPpV7VLezr9+n0+zb6/azT9vl6xmiDUR6j
vEYJwg5bmus0o3R2TmtUNuzmK0yMMPrdzn8Y/YSPjfiRz/VGpzivh7cRvbN8
ruvzfbbRj2HnS370XKgJbhRjJJgaQdzh8D6GrzynM/ePkY1i9mPow0yw0x/9
adi0AXvDWXWOYHo48abRh6lQb2Y3Hbwobk/m2ou5t2bmi/ArXo+Qw7Z09xkt
Rj6PGc5l3l8ajcPfeqMN2K2HtyXk8DqDOpdT6zesy/E1EGxJZxn8rdhuoSc6
bwu550tn4nZijeBZ+c1nP5CzMKnn5GfY6rNe92Eic5tAbap7IbG+Jp4wLJx+
EXK4lo/Z1N0J+RectZ9DPZ+jPydmP5vzIvo5jFjbmLfeTYT9yJ0YS+xZxO1P
rA7IpjPvTey1bg45TAl/S40+CEXfcbpwrkHdNeHrnuu+D4a0b4FuV/Sa01Px
a2HfnRiKtcRoI/lMZYajyGU6ec1g7iuoUXVvpz6dI7gYjr8R2G3Bdjh9W0Kt
04i5OBS9ExvgKYcpnKeS5zLy0buM8F0b0l44L0Od+iwTpr41Wh1y/y+xcLQT
mseM9dkgDOn3S28Y7Q+5u6K6LlKbcHzA6GdqOUc93xLjS3R+pvYLIYe789gt
J2/h5gfi/kAe2q/Cl/wIx+vIaT55Knf9v03Ctd5NF7HfS94TsTlP3C3Yym43
cYXbHcQS/vT+rL8jPJ7+jGMdTx5foDsHO+V7kPp+Zianjc7APxRymPjX6JXR
JaPbRoeRad4/MkP18Ff6+BM8yc6GHCY20nflLFz57RntM8ps9MDO943eCju+
eFmM7hnvzXBUdp+z9omx20fv9hJ/EzH3k99i5r6VGZ6jp1vgXwATF6lvOzV/
Qw+W4OtH6jrA3M8QR3Wtp28bkC1FdzP5/IrsDPr78KncVOfbRoGww61m/33I
/T/awo2eiZeNroQcto4yU2HrKni4wiwvo7OPflzHl3yeZK/1lNELaj+PP/n9
hf48h/8nuIjcE51vEW8XsY5g+y05CFe/hdz/B64chPHd5HqNnPYiv0Gu4gnr
J8j1OflFclNea4gl/B5mVjuYl2b3L7xv0TlCPr/Rl5XYSfaS2l9Q1y1mHbIZ
3CSvp8ztLD524F84+J35PkNHun/A+x2dm+wV9xCxd9OPBcx1PHUdQm8FM19L
P+ZjswC9tdipfwvxdZN4wpPw9Y/RE6O/qOkW/XlJjy5S+0viHkRXdBveGXyc
pa4/wcA56n3G/hmzOkDt0j1NDmfo401ye0Kf5PNX6/Mm3t8y8xzIxD0Ichce
hRxWHxp57OwNO9xd5nwF/8KObG5TQ3zbpzZKE3bzVX6p2b8Wdv1QPXdDDldH
OSv3eGFH0otgXfvXje5gcxQSvu6Qj/DxH/70zNLvaihfYV55CtcPqEW5KucA
zy/J9O8j6L1YM0lDP67i4w6x/ibWf9R/GN4ReMrhFaT9JfK5S06n6OcjcKB4
eh//FyzoLIzr+aw7pXf3+LzL651G+NTnR6qwm3vKsMN32Na4sDs/Y8Z6F9H3
T31et2QvXnn24um7q95jIt/n83JuhV5Epwb8E/TvJDF/B1spiP2UWT8jx+es
qZm5ZhjBx1+c09DzF+AzBX6EAeFBdQnLycNOrudDmGfEE/iyOUVfHxtlQydE
jnH4ygq2I896YUDPQD0T9Zn3P2aleScKuxlrrhnC7vxG2MnVgyTcj6SsOmcj
puLkNMoFjlW/+lAKnxm5S7nAtXRKG5WhH69xB3Kimwn9N/g8vgv+MsTIfehI
Lr03+Xx+GIN7nZPw+Z6FHqQmdhrwfBtMp6f2V5wTcg8ywJdc+Pw7xkbnhPTq
DjavU2duehOkP3nAdm7wr3vwijU9++zgOkzv1MOS8CTLwexLgL/45HSb+6xn
wH3oATzNWvda/bqPzj34Pnrjpzf/A296xgWJU5JYwl1x4mtuaelhanJVT8vC
lzwd53L0JDf5ZqOWMPOOR13vwpf8cSiKtTjk8cglFfmkIJ8S6Es3mdHPRn8a
3Qq77+b7jW7COxB23/krgKXyzE9/bpAPbFUEX3mRJYBXCX46akqPfQb2+Y0K
hB0WC4DHN/BZAR8JiZMI/USc38SmoFFloyphd2cLGRUOOxwrfmZyyML+HXTe
wlZ5tTBqic+CyN6IifkOtpXw+xY+shD7bfbvcE5CDkXIKys6hZElJm5ZYmek
JxWQyy4ym6JGxdgn5dw07PDThNnLf1VmXs3ovbDDRjb47eG/yyq97NjLT8kY
mfjCRyOjxmGHl0bwcuBbGBQ23zeqwaqz7nBp8msGNQ87bOfCrrrRB2F3t2ug
XwqbqtRSBb2cxCuNrzL0qyx+qxM78uyogd+i9KoIemWxLUFNqjcvuspFfzY1
gH4IB63CDqc1ww5reZlXS/itmVUr7GuGo/dB+1rIKqBfEZs2Rl2x6RJ2+BW+
PoRqw6uIbcSmbdhhT/KC6NQ1qhd2mBLmPjL6GLn06sB7B/u27CuhI3khcq5F
HnXh1SGHNugXhi+5/kxP74ObiNeOeVXmXIW8imAn7HUIO2x9SBzF+4R5y74Y
M2sQdjisivw9bDvi5134HZBVw0a29fGjc0Pm/Bkz/Tzs8KUZC8v9kY/FV3vO
/cNRLDTFtnM4inFhcGDYYapT2OGvI/vOMTpNidmOWqrA/xz7IvSoPnV0xJdk
g/BfA59d8FudOJK3QKcIPlT/YPiDqEW5l8SPfAhzLdEbwl5rK9ah7Gszpx5h
h9VuYYdpYUF4HMb5gxh5rRgdyYdj3xN/Q7Ftha5suqPbGrlsRoQdToUjYXck
e62j8FcnHMV3r7DD5Ej0ZT+fGgeh0xO9HtTVnTyHE6s3Pnoxk7rwRuCzLbFH
M88+9Lween3Yq8df0ZNaxPkQXen0DTu8CWtjjPqFHVbFF+b05+ID0O+LTLw5
8BX/E3Joz34MPr8IOxxr7ch+JWfJG+KvH3utn6IrnS+N5tE79W2c0fiww5/i
f04OA9nPRacTtgvo+Xx8fonsY3rXDpvP8dcZ+Th8ziPuQPTm0c/x9HQM9Y6G
1wUfE+i3dA4braJu9W270Q50JoYd5rqhL57w3yIcvQ+DqUP7hWGHySHwFkKL
4E8OOzxNCjscCceLmfkkZBM5d0NH8iXYTgk7XKo3y4yWG00LOzxNRV+6wuDS
sMO39r2wnUrNa4zWwuuFz0XkMxQfS2NspxJjFD6XQSPRUw7Tww6vPaljMufe
yLtT2yRqGkZM1fANM/o67DA2A94Y+H3h9WNGms8c1h/Ya4bCzxfMclXMXlhe
EXY/R9qOjxX4V5xPiT0T3THIPyWmZPoc12ey3j9X00NhapfR7rDDsOJ/G3b4
3Bl2mPwBmkueo6h5ND3rS5/GYyff87DfxXkcftcwv/HEWgV/Hrrz2c/Fvi8x
1Ls9YYdJ5arPXH2m6zn10uiC0Yuwe3/XbPZBi5nRd8wtMj+dvw87bO9FZzpz
3kQuV4l1hByV6xXyugxPsqNh9z3iILPYS2z5XEesiex1/4Rb/fxP+FtKPMXd
SF/F13ePqfAkW0It+9lr1fcV/bxxMrVMYp1Mbkfp/UJ6t5f9As4TyUd5CYe/
MefL1Kj9L/iQL+FQmDoUds+cley3hh2+thj9TU8kn4lsG/uvOfvi7Duk0TXb
Z49z/89qjjg34y3ofUWflN99o+NGx5iH8p9Prw7Q+81hZx/BymZ8aYbXsPsF
H2uw/Zl5raHGX5j7Fex20Ycr9OYyPTlIH76hb5eQH4J/kPrVB2FmOzo7mPVm
8jzArIWFDcx7CnlJ9iczux52eNJ6g/1mfP0KnYN3h1lFcKnzXSNvnKvDY+vJ
sMOJcPkfvMvU8B91etC/jJ+79EffjfeTxw32+/Cnn4ELjz+iF/mZ+QFqvMrs
NY8TYYe749T4P+pbC28dOifD0bt6khjS34PNdzG61+Br1pnj3P+LmCnOfbf/
i7ncCzs8HWNGmtntsMOosHmBvdaLxNiD77XYRbCo8xrqVX1Lmd9k+vA3MW4z
W81Y93kJNkvR24DdMXp8j/jK5zy5HyL/q8xSfbyH/l34V5D9zdyFAeHuFbP9
jb1mrLtxDv/C2y38b4Gn2AnjnJ+/qeEQuZxDT3grFef+D8aStnaPc7+r2iPO
5fQGOZ5kPg+ZsXoaiHPnR8ivwwsalY9z/29VhTg3b+k8Ri5bPTvqx7l/Z61B
nJOfivEjHzeYs+K/GefoHjnJV1Jbk4EN3bPXbP8s7O7SU2L8j7nLXwifneLc
vw3SkfxV1wMw8YBzOM7hXzZPbP3HKHmcI+2TsUp2htoiPN2Zm/jQPi7O3aHf
4eksm9P4/Yf9Y2aoOl7X/80X5/4tzTrkLp/Kv0ac+7fAa9Lbx9ifJZ+nrGfJ
LV6c688f8J7So9fgS96If8uuMfnFI2dhIFGc67nukj6n/wVXicCWcla+f6F7
F+weZ34PiJlC//+lURL6nlj/JydYPYeP+PhRrAvES8h9SBAXxbH2snuBnuxu
g+0E7MV7QBzFEzaex9yZ59i/hd598kwZF9XVmoqck4LT1HHOLmKvcxqjItwj
3adz9PgZdUdmIgwrXqQv2ifG92PuiXzK30vOyj0J2EsBHlORo3LVPNLami7O
8VPT17T4SIPOS3j/B3RRlHA=
"]],
PolygonBox[CompressedData["
1:eJwtk8dOVlEURm/++5PsmWWijhR7B1EpRlRs2EBFsYAVe6OpiajvIExsz2Ab
6UNogkNN9AnkASwMXCv7Dlby3Xv23ffs73yncWikb7hWFEUX1KEliuIPL77D
RvQ49DYUxVG4jz4DkxSOQz/6GMyURfEJetHr4RXfTsBK9AkYo3YU+tBH4CO1
v6AHfcj6Mt+59tCe/KsZRtBbYGGZe3Jv++ExzxOwD30FvtD7LVxGb4dFrM1S
34reCa08t8Eu9A34Su0HuIZeAY+ofQ6r0Beq+d7D1cgaa6fgIvo6TNezh72s
sdZ3rj2I9MoZnMWe9n4Bq9Ftlb/O1Ilugh88/4Ot6E3wG72A9c3obZFrf6Ej
ciZn+wnN6PbINXvaex28rOUZeBYb4Fste9p7sWdYy5mdfTkMogdgWeSZe/Z+
47dLI9fOQiP6HLyr/DmPvglzmLUJhtGj0NOQmRmLrLFWT83OXugo84x2oA/D
a/RTOKh3kdkwU2ZrSeS/3bN7N2NmzW/8dgg+1zMDZuF4ZNaewSn0AXhSZma6
Iz3TOz3Xez3Wa8/DrJlZs6snetNZ5c8MmaWuyCy1w+7IO+BdMOMn0ZfgTT33
5N7uwXy8mAd3Iz3SKz3SqzuRa3PhNnpPZG890quByGzr+SD6dORs/sN/6Zne
OaOz3ors5Zl4Nt4h75J7cC9meKo6D7PuHfIueQe9i2sis2qG1qL/A1hGceg=
"]]}]}, {}, {}, {}, {}}}, VertexColors -> CompressedData["
1:eJx0unk01fv3Py6UUNIgQ8YkotCkiR4oIppIQgMaqAyllBRpUJRIkzGFkNKA
0kxFokHiTGaH8zrHcF4HjdLg9/z8lvv+rtVa5/5z13q11z6PvZ97P/bjcbs6
3oFO2yQlJCSCR0pISJF/d1V/YnR84WGt6QdbOSUu5oRYq1tWNmAsxiFesQNt
YzaMlJ7RBtvkhZ+StTkoKx2r5LCahvVojc+vtSjoTwlYlVbMxMirgpz2AyLs
yp/tVSrZgXfZc5euFjRijs+N4wnTe1CfdWlEZHknRHiez8xsxZLE6y3LwnsQ
rh0jfH6+C5IcZclx6VyIJv+OZF7ogeGv7aOuVXShdfjXR23tXLHx/+Wv+ye/
ODzi8CsO1csdqtduqF5x/TE5OXrh5+Zu9OuaDwYdb4eG/Ud3yZxa7BLcsJx+
SwRv/sSW/mMdMBnGO2ej14yOF/InlbV7oDYidpRNTieSA6c8VgprhdOPBPYC
NRpTYv04yYk8/L484er2QAaCTpZHSGp04HBE/t4tM9uQmNxQ93MsB2pJXmst
VUVIzNiqaDRRgAUPvrNjU+vBcz7vWXFehHPBzcaDNh14mN4XPTq2Cbm7jTKP
kn59eGEim6bQjgXnHvo1zWDi3LS2n7tiaBTLTzVWKaLQOifUcudsNmpK7ky/
tUmErcf1ZhSVCtC2eKTS5+WNOBDwwChzWzcOvds44dP6dow/e3lTxlwGnu5U
cpmvIkKu8dRxCeMF6Ko4Mcbwcj1ow7vtz/fTMIjL/s47QqEkk100mMfC/u6a
o2MX0gjvHRxm1sHDvhUP+mrmMPF9362DF2VEsLC74v+nk4+YRe6f/xrXY+mP
abKj+4WQiHVjGC7hgVV5ZfiJlFqUTt8TOF5JhJIL8own8gI4tfUW3DpWj8W2
AZZB0jSCnE8063vzUMBv/raxoxZZQR7dehIi7LNmyu5g87HN84pqt0Q9ctTe
3OSq0jiw3du3OIEH5uKrPUv8GTgVfd9PlcxJzq/ZH+zJnCg8fR2w8zkTf1uS
rv3Zx8fnfMpucyoXawwCPkZI14O/xrPhsTwPplEaxntKW+HwTj5jUX0jKszy
PbVJPZtvnHtr8prErzta9e1QHQ5uMKoInd0N3t2UQ6bL2tGUd1QhZTcDVgYB
s9UUaISOlC52COXh4s+b8uZTGFjXL/fL1ZzGXcVRM/k0D8o7by4TWTPFxovL
Lw7Pv/iXD+EXV6+4/sRu1UtLGNuDhVpVdsOPd0JTM6d68upW0PP152eq9EC/
oMY+42Inlv5pGfi5rRWek1pqzg6jYeub9l7ozkPk/uSVgaxafF3zrfWDnwAy
Ebcv7v9CfvejcecULgcLb2ZwuCIaPitkGhbn8bFV63RW86U6LJSwEGlVieA7
RXase30HkuaEGv3804yL990MRandUBubcxt+7Zh6fcX4a19rsXPGbFpGk4bX
pd0Kmhk8bOaz+v6cZOAV1XumMk2ERW3LJ0lu7cBEw0DTQ5wmxKc10BuXClFa
1JOmnNMOFx991zKTWtg8nHU96TYN6YAeVzlZPiZYyAxoDuPg9hb9vvgeGiM1
nFV+3OYjUerl7snJdXjQUSTX3CBESueC9Q9+t2OAuXDMG2ENuh3Sw3+ai5DJ
lRo4GCgAT7ajSS60ASe42cn7BUJksMe+KFDlIbnRQi9vTi0O39KcoTpKhNjV
Fsb23/hIPTslXNKhHk/4Eu82TqKRy/v8aF8KD52/dz0M2c9A6cKImioejRKz
fIcxF/g4efV+ga9rHa4NONYEzqLhO3HmOx0mD0o2TcrHhjMxeeRX4b4GGkaP
as7eOcSH2WBHdIAGiT/YPcn6QA/4zhbHTY52gfF6aq/jGS66VOe4utiKcJUX
lNByUoB9/rnqY+834PvdLqWHZkL0jry93SGjHfV5Cxw+oRauUyJUh1VRcDQy
Yt/14sJRf9sYZkU9JIdpTmOva4ddPs+65XgrMk512QvuNOFmQpqz1J82HGOf
vLFiayuamhKFx1WaEX/nRUH7uHY8a5Zn/9nVCrclc/a/+9uEvH/iG4fixeUX
h0ccfnH1iuvPRlHgLO9uwlcHop4e0e1E1vlVNZ6FLZitpzay+4YQK3aXSgW8
bYdI6ohczOMaWPb+yAkkPBV+ZtXC/mIu7I08Vr06Vwel5QmRn2ppyDftlL/s
y4dgq6LseBEHr0c4eXwaEKH0/vN0peWdMLYLHxYt24oKG+H0nwwhHJxKZhzs
bkdQmFP7yFc16HLrrnNbK4R12czbD/LaYZH1fctP9Vr0X18oV1cowlJLKfaN
xA6kvksLUvBoxovf1weK5Gg8mjT6Xu0eHhS0ZtksGsPAo+TYph2mNK5PdRGM
q+ZhScnosu/9DBxXaOB/Xy2Clt3F8L3pAgy4HX078K0Bs6ZpsAQLhehj9/uU
ZZK76eglx1tYiy8BI6suG4kw93GkpdRSAWwnDkuwVGhA8fjipDSyp7OY755f
zuTBJzRZ6/ppBuRK3/46+JJG4JnuWU8X8hEgfFDgfpgD/2N1uSf9aHTsUOS7
b6cgF7d0da4/C+qpTjdqLtJQN0SbyjsKS40lQiN82KiV8rLjHiZ8MmNLkEUc
BfVwN3eFWhaMkgQFD5NovMooPOzCphB4bK5LXSQbr+xeyVjuoPHMjbXacBMF
ftz9Sjc3FvrtVN+uOUT6Vn+3aJ086duPj/kXfzdixrfBQwmZPSiP2v1FurcL
rKXbJZ5NaIPsMOmkztU9CMgeWOSk04Xq1JIX/hO4yK2ZH6plJ0JYwV/R+jMC
2K/wjJtW0oAE7mkH4Uoan9gOA+vVKTTlfvfXKmJC0/OSCxNChPgdKj6SRebn
bU6LylzCn7N63S6P6saLvC87Ixe04ytbcbhLGkNsvLj84vCIw/9fvW+G6mUP
1SuuPy/X72qqW9kFYz2peezvbej7djbFN4yJs3Z8T70gPtnfMrfNKVwMTC8Y
USdTj/68OFmLahpLGK7MjM18+JpyGa1sDnJGb/3E0OjBz9dddmnpnRCWrno2
fn8r3jdN3TlZkca6qk+2nkd4KOnv3cQ0ZcB462sJkzVdWN24YVzujzZ8Vjh1
+mYoE6fdXThe10SYOcK2/q9PBz6/vZm5qa0J4y1/3Uk5REOmjBc0JobCzS92
mUbvWPgdHm4mdVAI3cB2+cTH7XhyU47T3FcDt5epj0rCyDyf6j+9YyzJw313
67p8EzZLfn5kwhLide6HM0dF7ShU2L8strIGRk8WT25m0bAKHn1h7m4yzw/W
MAYk6lDsecHYL5pGvhI3P/EOBdPiePqTNhs3qmyCHqylcchAq+GjIYVbPsvj
/9Yx8fnVj9s2NTTmyG/Y/WgrH9ZOs6sP8zhIfRDiXD2PRtMOTYULbTwMbBPu
4kxlYmar/vlUEr96LeNm/DY+fvobnk7gczB9kqd1lD2NcoFne7MChYM3tOcW
XmTiyRa5yQvuE1135fS4JFU+HHdajjAx5GCgOL9UJYiG3bDbU+32Uajzu687
+xwLd8oNX+ycJ4Bi7PvAwlYuztfuSO3UqoPWePTF36KR5Ryr8kOKD48lT9hR
X9nIP61PjTHvQXy488BMuhOuFwda3ta2QmOYdS6vtgfXsi/xXvt2Y59U4aiQ
m20ISRukYh73QPpe4OGuqd2w3pXoXbW+DWEKj1mL9/RgjB3W6Qd1oTPPYnZu
CBehSTanvcncRmdqJkhod8Hrm9z4d+O4YuPF5ReHRxx+cfWK609AdHnvyzN8
zNFuPb/5Ohcvly11f9ZZB6cDl3MMaBp6Vb6tPTlE/4QttjY5U4dI4bAD28jv
6u79xpcRdcL3nNYUBqMVp5+mlkxYQuNeSIh68V8e1k2ZxS70Y0J5nSl//rsO
TFkaKnkloA1aO0bfnmrDxkB8t+uCABHenLNISuoSgONy9NSWW40wdXTOdvxK
5qTNsqnyMR/9e6QZ+x7WYVlvV9CvxC48G7DK4Sm2I/OLaIUlmauEWTyH6ztE
WD3Z6NeUFgEUrjlnDsQ2gl+roG82l8blB0pXxzbycE7koVc0kYl82bEHP3jQ
UDSfJDxjTiGPmSr6OZyFHwEmFTv+0MACQf75aj5eH47B95469D1ZPmLDdyFm
HTBa0buYB/Mnc91l4mvxvlPxZpuaCGuFyXxLNQG0l3w8cS+7HruESS+8/wrR
FtSnOcyZh8rH2jffvqrFxLQCx3xpERRMTMJet/GhzXisoKJRj7xNc96qqNCI
PPfFzO4CD4bhYx1nezNw/5XpSI9OGomnuz75p/Hx9bjX++S9dfikNUW5kuyX
95flPyLIfo09fzDuFunD6/ZVNTbkTi3dOP/dfHKnZpyY7KB8iPBVlOzHF5UC
zKf1pXUIPw733ljauJeD6ld7Z2uQehKLv4VPZbZiBmLS/6Q14ufyeTLtPV0I
fpuyPNCkHRPyv/mMf8HA2a52zpTPNMwCbnpsv0/m5Y5mjvLNOqyde2R9yw8R
DHLvJD+y7sRqPdfzPhKtWKS79nsr0Sddv6yznh3rQmqttPeCs1w815Lk6qT0
wPTLt57m+i78/SW8emyAKzZeXH5xeMThF1dv9j/9kRnqT03wxqeYQ/zp8vr4
XDcBQutzo/uWNOBIxSEzM7ceTFDNfj3WrAuTTzmOMTDmIkKSFaGzlYbKzVOD
G9dQWNloHJm6gIWMkw98L+cJEBvwWI4r2wbPTN+p+pc5sHG1LaozFEEqXDvS
0FqApasFZnmyDQj2kPRu8hYhNGp/wewqAWqkgqd/39oIn+ffTXo6OmF5NunH
8No2WG182LHoGxPfFOQ2XCNzuKgyWjdFVYC139n+Sln18NdWri8voiHYd3PT
Ly0+RlZ+myC9kIPKvXdPjKaEcLTRl80bz4PVnGyzJ3q1uBLQb5vgIILno6YA
6YsCpIbO685lNODx19HHF9cIkX1qfGQ2rx0Tn0RP18ivgQdzq9p5bfK7j/2O
HDAg8T8sLHor6yG7RH2UiSwNf4eHDYP+PFy5quTwfDgDZxjuj9W+EX31sHbU
h6d8vNKbHRb0rA6NO0+ey9Kl8ffOi6kG93jo+V3v+DGXgWPyv7TmdNBItdx6
NiaFD7dl3M37/erQ3zl/9gpDopeE4RbvXpD3vDmDPbaWgY833p7420zujv2u
6JMn+NjZvnLextl1yFV2oR4sJvk3vR6o/sID77X11+Q1TMTQtlce3BLh/rd0
29UnOnDp7Im5SQbNWGTRN3+6UTcWzp6lY7O0HbtP9y7fHMrAgOEIkeeOduwb
f0Rty+lWXJw+N2lSUhPKd42o0m9qR++GNU7jC1sh98bhym/FJtj9OTxoPLED
113Hrf5j3IYZj776SahxkHTMq6WlqRsjL2tdHHe8HbcuyHYvvVGLmeYnvy9u
FWL1whdZOTI8/LSyfC2UqRUbLy7/m3/wyA7hEYdfXL3/9ufiUH9a/Lyu2O7u
wfA5vPIngV24L33nfk4wF1d2HjNYT/Sq552ijO1Er/r8ivXqIXpVh79ifPtb
PlJM7s6Je8KF+xbm9uNXyR1p67ltQnziFHe73Ufj+bh2d65UrHMd5hRUrzrx
TAR3rwFplzsdWPqwXvThXDNqh72IZGzrwi8DJHf9JTpveYrVVm+io+wPl667
Tu6Oh/7U9j4K0V4fowrfsDFn8EIlw0yE+nTvuZqe5O79+jXhq3MDhg2WfIy9
2I23Lsv8VpJ+eM9LUAj5W4sSm99uy5yJjnLySTPPEcDv3oMBZ+lGfAhf8lD2
txAcz6RTk1fw8KN5pIX5/VqcTXGZ2UV866Mb5Y9qD/Nx9YdNoo12HXKsrL4c
cKXR/+aCRtFMCpmmxjy1biYm7Bh4Xp1D4/RNb5WLAxSU9W5ut2pikz2zKLpK
+rZpnVyk6mYK3kZhUrc8WOhRLMvQv0NjepX7Wn85Pn75xrjGSXOwWOOisTbR
Y5+Fbfnu0yioHKvU9mIxwTp0LCu6kviUOjOPtpV8mG6P83W5w4FCnkbTSAsa
Pz8t3H6th4e1ZSe+mi1jwkNrGu3zicaCIFeFWG8+ZsYl9mm0cOBYz646Rt73
ok2M9ZrdXdA4I7XSez8Xwxd5b1hs30P6tX3KVIUuxK7+8zDndyusvY48Do+n
8Weiyeg3r8i7v1QKb3Zi44Tn29MeHwU4M83ZXHViG/52n+y28edg/9wtq1yI
Dr5kEZ670rsVMmfX756p1Qzrr1+K6jO4MP7qyHVktmDg7my9iLstyP5YHX4u
gnxnP2ub9bwFrIaBxmp2i9h4cflPDuGJGcLzewiPOPzi6v23P5pD/dH1OPuq
0ZbGXZka3VkjKdQPG3Fc7wQTzeZVpj9+UND8M006cDcXjVkJXkcS6sEK27az
MZu816aAZTP7KVwOunFhHZuNra3bDHP/ilC9NlA/37kTcz8tqg5SasXBBCuX
dVXdWLnm+qPUsHYY6Ai8o5/UYvSIjstq2mTeCu4XOebwsPqztALnAgN/1VUl
FC+J4OR316LAoQMvClMkTFOb4L/w8uakfd2IphcZjN/UDuV75dryUxigVjdZ
TlUQYYIoqWXHANEbHnH9j13rkXpw+T7edhqNtYaeNusplBd/uPJ0OQtn996I
GulL5r9M6YKWB4Wd70OPVa1hYdra2J+zymks3r/2drQt0Y2ZWXsykjg4hvNz
7a1ppFhvWvLyNw+6vc+p1z5MuGZsG9xI4vMfixZ9I/FFOvtNbidz8FVG81WU