-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathplotting.py
137 lines (115 loc) · 5 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import pandas as pd
import statsmodels.api as sm
plt.rcParams['figure.dpi'] = 227
gain = lambda x: x if x > 0 else 0
loss = lambda x: abs(x) if x < 0 else 0
def display_predictions():
pass
def bollinger_bands(stock, std=2):
# Bollinger band plot with EMA and original historical data
plt.figure(figsize=(16,5))
plt.style.use('seaborn-whitegrid')
plt.plot(stock.index, stock.Close, color='#3388cf', label='Price')
plt.plot(stock.index, stock.MA21, color='#ad6eff', label='Moving Average (21 days)')
#plt.plot(stock.index, stock.MA7, color='#ff6e9d', label='Moving Average (7 days)')
plt.plot(stock.index, stock.Upper_band, color='#ffbd74', alpha=0.3)
plt.plot(stock.index, stock.Lower_band, color='#ffa33f', alpha=0.3)
plt.fill_between(stock.index, stock.Upper_band, stock.Lower_band, color='#ffa33f', alpha=0.1, label='Bollinger Band ({} STD)'.format(std))
plt.legend(frameon=True, loc=1, ncol=1, fontsize=10, borderpad=.6)
plt.title('Bollinger Bands', fontSize=15)
plt.ylabel('Price', fontSize=12)
plt.xlim([stock.index.min(), stock.index.max()])
plt.show()
def volume(stock):
# Volume plot
plt.figure(figsize=(16,2))
plt.style.use('seaborn-whitegrid')
plt.title('Volume', fontSize=15)
plt.ylabel('Volume', fontSize=12)
plt.plot(stock.index, stock['Volume'].ewm(21).mean())
plt.xlim([stock.index.min(), stock.index.max()])
plt.show()
def macd(stock):
# MACD
plt.figure(figsize=(16,2))
plt.plot(stock.MACD, label='MACD', color = '#b278ff')
plt.plot(stock.Signal, label='Signal', color='#ffa74a')
plt.axhline(0, color='#557692')
plt.legend(frameon=True, loc=1, ncol=1, fontsize=10, borderpad=.6)
plt.title('MACD', fontSize=15)
plt.ylabel('Strength', fontSize=12)
plt.show()
def rsi(stock):
# RSI
plt.figure(figsize=(16,2))
plt.plot(stock.index, stock.RSI, color='#ad6eff')
plt.xlim([stock.index.min(), stock.index.max()])
plt.axhline(20, color='#f9989c')
plt.axhline(80, color='#60e8ad')
plt.title('RSI', fontSize=15)
plt.ylabel('%', fontSize=12)
plt.ylim([0, 100])
plt.show()
def hist(data, name, bins=50):
plt.rcParams['figure.dpi'] = 227
plt.figure(figsize=(16,6))
plt.style.use('seaborn-whitegrid')
plt.hist(data, bins=bins)
plt.title(name, fontSize=16)
plt.xlabel('Values', fontSize=13)
plt.ylabel('Quantities', fontSize=13)
plt.show()
def qqplot(data):
plt.rcParams['figure.dpi'] = 227
plt.figure(figsize=(16,6))
plt.style.use('seaborn-whitegrid')
sm.qqplot(data.dropna(), line='s', scale=1)
plt.title('Check for Normality', fontSize=16)
plt.show()
def compare_stocks(stocks, value='Close', by='month', scatter=False):
'''
Function groups stocks' Close values
'''
plt.rcParams['figure.dpi'] = 227
plt.figure(figsize=(16,6))
plt.style.use('seaborn-whitegrid')
group_by_stock = {}
for stock in list(stocks.keys()):
if by == 'month': group_by = stocks[stock].index.month
if by == 'day': group_by = stocks[stock].index.day
if by == 'year': group_by = stocks[stock].index.year
a = stocks[stock].groupby(group_by).mean()[value]
normalized_price = (a-a.mean())/a.std()
group_by_stock[stock] = normalized_price
if scatter == False:
plt.plot(normalized_price, label=stock)
else:
plt.scatter(normalized_price.keys(), normalized_price.values, label=stock)
plt.plot(pd.DataFrame(group_by_stock).mean(axis=1), label='ALL', color='black', linewidth=5, linestyle='--')
plt.legend(frameon=True, fancybox=True, framealpha=.9, loc=1, ncol=4, fontsize=12, title='Stocks')
plt.title(value+' by '+by, fontSize=14)
plt.xlabel('Period', fontSize=12)
plt.ylabel(value, fontSize=12)
plt.show()
def trading_history(stock, net, std=2):
# Bollinger band plot with EMA and original historical data
plt.figure(figsize=(16,5))
plt.style.use('seaborn-whitegrid')
plt.plot(stock.index, stock.Close, color='#3388cf', label='Price')
plt.plot(stock.index, stock.MA21, color='#ad6eff', label='Moving Average (21 days)')
plt.plot(stock.index, stock.Upper_band, color='#ffbd74', alpha=0.3)
plt.plot(stock.index, stock.Lower_band, color='#ffa33f', alpha=0.3)
plt.fill_between(stock.index, stock.Upper_band, stock.Lower_band, color='#ffa33f', alpha=0.1, label='Bollinger Band ({} STD)'.format(std))
plt.title('Trading History', fontSize=15)
plt.ylabel('Price', fontSize=12)
plt.xlim([stock.index.min(), stock.index.max()])
for i in net:
if i[2] == 1: color = '#ff005e'
else: color = '#4bd81d'
plt.plot_date(i[0], i[1], color=color)
plt.plot_date([],[],label='Buy', c='#ff005e')
plt.plot_date([],[],label='Sell', c='#4bd81d')
plt.legend(frameon=True, loc=1, ncol=1, fontsize=10, borderpad=.6)
plt.show()