-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathfunctions.py
191 lines (154 loc) · 6.67 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import plotting
z_disribution = lambda x: (x - x.mean()) / x.std() # works as a map function or in list comprehension
norm = lambda x: ( x - x.min() ) / ( x.max() - x.min() ) # works as a map function or in list comprehension
gain = lambda x: x if x > 0 else 0 # works as a map function or in list comprehension
loss = lambda x: abs(x) if x < 0 else 0 # works as a map function or in list comprehension
binary = lambda data: [1 if x > 0 else 0 for x in data]
# split a univariate sequence into samples
def split_sequence(sequence, n_steps, split=True, ratio=0.8):
X, y = [], []
for i in range(len(sequence)):
end_ix = i + n_steps
if end_ix > len(sequence)-1:
break
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
if split == True:
# X_train, y_train, X_test, y_test
return np.array(X[:round(len(X)*ratio)]), np.array(y[:round(len(X)*ratio)]), np.array(X[round(len(X)*ratio):]), np.array(y[round(len(X)*ratio):])
else:
return np.array(X), np.array(y)
# split a multivariate sequence into samples
def split_sequences(features, target, n_steps, split=True, ratio=0.8):
X, y = [], []
for i in range(len(features)):
end_ix = i + n_steps
if end_ix > len(features):
break
seq_x, seq_y = features[i:end_ix], target[end_ix-1]
X.append(seq_x)
y.append(seq_y)
if split == True:
# X_train, y_train, X_test, y_test
X_train = np.array(X[:round(len(X)*ratio)])
y_train = np.array(y[:round(len(X)*ratio)])
X_test = np.array(X[round(len(X)*ratio):])
y_test = np.array(y[round(len(X)*ratio):])
return X_train, y_train, X_test, y_test
else:
return np.array(X), np.array(y)
# Evaluation of ML model
def evaluation(X, y, model, n_preds=10, random=True, show_graph=True):
n_steps = X.shape[1]
max_random_int = len(y) - n_steps
y_true, y_pred, prediction_accuracy, slices = [], [], [], []
for i in range(n_preds):
if random == True:
position = np.random.randint(0, max_random_int)
else:
position = i
y_hat = model.predict(X[position:position+1])[0][0]
y_pred.append(y_hat)
y_true.append(y[position])
y_current = y[position]
# If we predit return, c = 0, else c = previous sequence position
if y.min() < 0:
c = 0
else:
c = y[position-1]
if ((y_hat > c) & (y_current > c)) or ((y_hat < c) & (y_current < c)): acc = 1
else: acc = 0
prediction_accuracy.append(acc)
slices.append((list(y[position-n_steps:position+1]), list(y[position-n_steps:position]) + [y_hat], acc))
if show_graph == True:
plt.rcParams['figure.dpi'] = 227
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(16,6))
plt.bar(range(n_preds), y_true[:], width=.7, alpha=.6, color="#4ac2fb", label="True")
plt.bar(range(n_preds), y_pred[:], width=.7, alpha=.6, color="#ff4e97", label="Predicted")
plt.axhline(0, color="#333333", lw=.8)
plt.legend(loc=1)
plt.title('Daily Return Prediction', fontSize=15)
plt.show()
print('MSE:', mean_squared_error(y_true, y_pred))
print('Accuracy: {}%'.format( round((sum(prediction_accuracy)/len(prediction_accuracy))*100 ),2) )
return slices, np.array(y_true), np.array(y_pred)
# Function to scale all features to [0-1]
def scale(dataframe, scale=(0,1)):
columns = dataframe.columns
scaler = MinMaxScaler()
scaler.feature_range = scale
return pd.DataFrame(scaler.fit_transform(dataframe), columns=columns).dropna()
def bb_trading(stock, budget=15000, u=0.03, l=0.03, show_graph=True, show_return=True):
money = budget
stock = stock.reset_index()
net = []
for i in range(len(stock)):
today = stock.iloc[i]
# Buy
if (today.Close < today.MA21) and (abs(1 - today.Close / today.Lower_band) < u):
if money > 0:
stock_amt = int(money / today.Close)
money = 0
net.append([today.Date, today.Close, 1, stock_amt * today.Close])
# Sell
if (today.Close > today.MA21) and (abs(1 - today.Upper_band / today.Close) < l):
if money == 0:
money = stock_amt * today.Close
stock_amt = 0
net.append([today.Date, today.Close, 0, money])
profit = net[-1][3] - budget
if show_return == True:
print('Number of Trades: {}'.format(len(net)))
print('Time Frame: {} days'.format((net[-1][0] - net[0][0]).days))
print('Profit: ${:.2f} | {}%'.format(profit, round(profit/budget*100, 2)))
if show_graph == True:
plotting.trading_history(stock.set_index('Date'), net)
return profit, net
def macd_trading(stock, budget=15000, show_graph=True, show_return=True):
state_check = lambda x, y: 1 if x > y else 0
stock = stock.reset_index()
money = budget
prev_state = state_check(stock.loc[0].MACD, stock.loc[0].Signal)
stock_amt = 0
net = []
for i in range(1, len(stock)):
today = stock.iloc[i]
state = state_check(today.MACD, today.Signal)
if state != prev_state:
# BUY
if (today.MACD > today.Signal) and (money != 0):
stock_amt = int(money / today.Close)
money = 0
net.append([today.Date, today.Close, 1, stock_amt * today.Close])
# SELL
if (today.MACD < today.Signal) and (stock_amt != 0):
money = stock_amt * today.Close
stock_amt = 0
net.append([today.Date, today.Close, 0, money])
prev_state = state
profit = net[-1][3] - budget
if show_return == True:
print('Number of Trades: {}'.format(len(net)))
print('Time Frame: {} days'.format((net[-1][0] - net[0][0]).days))
print('Profit: ${:.2f} | {}%'.format(profit, round(profit/budget*100, 2)))
if show_graph == True:
plotting.trading_history(stock.set_index('Date'), net)
return profit, net
'''
def rsi_slope(rsi):
a = [0]
for i in range(len(rsi)):
if i+1 == len(rsi):
break
a.append( rsi[i] - rsi[i+1] )
a = np.array(a)
a = (a-a.mean())/(a.max()-a.min())
return a
'''