-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathfeatures_engineering.py
71 lines (60 loc) · 2.22 KB
/
features_engineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
from sklearn import preprocessing
from functions import gain, loss
# Relative Strength Index
def rsi(stock):
# Create a list, fill first 14 values with 'None'
rsi_list = [None for i in range(14)]
# Change as an input
stock = stock.Change
# Calculating first RSI
avg_gain = sum([i for i in stock[1:15] if i > 0])/14
avg_loss = sum([abs(i) for i in stock[1:15] if i < 0])/14
rs = avg_gain / avg_loss
rsi = 100 - ( 100 / ( 1 + rs ))
rsi_list.append(rsi)
# Calculating following RSI's
for i in range(15, len(stock)):
avg_gain = (avg_gain * 13 + gain(stock[i]))/14
avg_loss = (avg_loss * 13 + loss(stock[i]))/14
rs = avg_gain / avg_loss
rsi = 100 - ( 100 / ( 1 + rs ))
rsi_list.append(rsi)
return rsi_list
# Moving Average Convergence/Divergence
def macd(stock):
exp1 = stock.Close.ewm(span=12, adjust=False).mean()
exp2 = stock.Close.ewm(span=26, adjust=False).mean()
macd = exp1-exp2
signal = macd.ewm(span=9, adjust=False).mean()
return macd, signal
# Bollinger Bands
def bollinger_bands(stock, window=21):
rolling_mean = stock.Close.rolling(window).mean()
rolling_std = stock.Close.rolling(window).std()
upper_band = rolling_mean + (rolling_std*2)
lower_band = rolling_mean - (rolling_std*2)
return upper_band, lower_band
# Moving Average (7 days period)
def ma7(stock):
return stock.Close.rolling(7).mean()
# Moving Average (21 days period)
def ma21(stock):
return stock.Close.rolling(21).mean()
def momentum(data, n_days):
m = [None for i in range(n_days)]
for i in range(len(data) - n_days):
end = i + n_days
m.append(data[i] - n_days)
return m
####################################################
### Parse tesla news headlines from nasdaq.com
####################################################
def get_tesla_headlines(page):
html = requests.get(page).text
soup = BeautifulSoup(html)
headlines = soup.find_all("a", { "target" : "_self" })
headlines.pop(0)
dates = soup.findAll('small')
dates.pop(0)
return [i.text.strip() for i in headlines], [i.text.strip().split()[0] for i in dates]