-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathprepare_dict.lua
54 lines (41 loc) · 1.2 KB
/
prepare_dict.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
require 'nn';
require 'image';
mnist = require 'mnist';
require 'optim';
require 'gnuplot';
--require 'cutorch';
--require 'cunn';
--require 'cudnn';
require './BinarizedNeurons'
zSize = 14
--encoder
encoder = torch.load('/media/arna/340fd3c9-2648-4333-9ec9-239babc34bb7/arna_data/AdvAE_data/encoder1.t7');
binariser = nn.Sequential();
binariser:add(BinarizedNeurons())
autoencoder = nn.Sequential()
autoencoder:add(encoder)
autoencoder:add(binariser)
autoencoder = autoencoder--:cuda()
print(autoencoder)
--load MNIST data
trainData = mnist.traindataset().data:double():div(255):reshape(60000,1,28,28)--:cuda()
trainlabels = (mnist.traindataset().label+1)--:cuda()
N = mnist.traindataset().size
testData = mnist.testdataset().data:double():div(255):reshape(10000,1,28,28)--:cuda()
testlabels = (mnist.testdataset().label+1)--:cuda()
teSize = mnist.testdataset().size
print(N,teSize)
local dict = torch.Tensor(N,zSize);
local x,y
batchSize = 3000
iterations = 50
--Train
print('Dictionary preparing')
for n=1,N,batchSize do
collectgarbage()
x = trainData:narrow(1,n,batchSize)--:cuda()
--print(x:size())
x1 = autoencoder:forward(x)
dict[{{n,n+batchSize-1},{}}] = x1;
end
torch.save('AdvAE/mnist_dict.t7',dict)