diff --git a/poly/src/polynomial/univariate/dense.rs b/poly/src/polynomial/univariate/dense.rs index 0bcb3ccaa..436160f90 100644 --- a/poly/src/polynomial/univariate/dense.rs +++ b/poly/src/polynomial/univariate/dense.rs @@ -413,30 +413,41 @@ impl<'a, F: Field> AddAssign<(F, &'a DensePolynomial)> for DensePolynomial impl<'a, F: Field> AddAssign<&'a SparsePolynomial> for DensePolynomial { #[inline] fn add_assign(&mut self, other: &'a SparsePolynomial) { + // No need to modify self if other is zero + if other.is_zero() { + return; + } + + // If the first polynomial is zero, just copy the second one. if self.is_zero() { - self.coeffs.truncate(0); + self.coeffs.clear(); self.coeffs.resize(other.degree() + 1, F::zero()); - for (i, coeff) in other.iter() { self.coeffs[*i] = *coeff; } - } else if other.is_zero() { } else { - // If `other` has higher degree than `self`, create a dense vector - // storing the upper coefficients of the addition - let mut upper_coeffs = match other.degree() > self.degree() { - true => vec![F::zero(); other.degree() - self.degree()], - false => Vec::new(), - }; + // If neither polynomial is zero, we proceed to add the terms. + let lhs_degree = self.degree(); + + // Resize the coefficients of the left-hand side if necessary. + // This is done to ensure that the left-hand side has enough coefficients. + let max_degree = lhs_degree.max(other.degree()); + self.coeffs.resize(max_degree + 1, F::zero()); + + // Add the coefficients of the right-hand side to the left-hand side. + // - For pow <= lhs_degree, add the coefficients. + // - For pow > lhs_degree, set the coefficients (no addition is needed). for (pow, coeff) in other.iter() { - if *pow <= self.degree() { + if *pow <= lhs_degree { self.coeffs[*pow] += coeff; } else { - upper_coeffs[*pow - self.degree() - 1] = *coeff; + self.coeffs[*pow] = *coeff; } } - self.coeffs.extend(upper_coeffs); } + + // Truncate leading zeros after addition + self.truncate_leading_zeros(); } } @@ -1138,4 +1149,140 @@ mod tests { // 4 + 6x + 5x^2 (coefficients [4, 6, 5]) assert_eq!(poly1.coeffs, vec![Fr::from(4), Fr::from(6), Fr::from(5)]); } + + #[test] + fn test_add_assign_mixed_with_zero_self() { + // Create a zero DensePolynomial + let mut poly1 = DensePolynomial:: { coeffs: Vec::new() }; + + // Create a SparsePolynomial: 2 + 3x (coefficients [2, 3]) + let poly2 = + SparsePolynomial::from_coefficients_slice(&[(0, Fr::from(2)), (1, Fr::from(3))]); + + // Add poly2 to the zero polynomial + poly1 += &poly2; + + // After addition, the result should be 2 + 3x + assert_eq!(poly1.coeffs, vec![Fr::from(2), Fr::from(3)]); + } + + #[test] + fn test_add_assign_mixed_with_zero_other() { + // Create a DensePolynomial: 2 + 3x (coefficients [2, 3]) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(2), Fr::from(3)], + }; + + // Create a zero SparsePolynomial + let poly2 = SparsePolynomial::from_coefficients_slice(&[]); + + // Add poly2 to poly1 + poly1 += &poly2; + + // After addition, the result should still be 2 + 3x + assert_eq!(poly1.coeffs, vec![Fr::from(2), Fr::from(3)]); + } + + #[test] + fn test_add_assign_mixed_with_different_degrees() { + // Create a DensePolynomial: 1 + 2x + 3x^2 (coefficients [1, 2, 3]) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(1), Fr::from(2), Fr::from(3)], + }; + + // Create a SparsePolynomial: 4 + 5x (coefficients [4, 5]) + let poly2 = + SparsePolynomial::from_coefficients_slice(&[(0, Fr::from(4)), (1, Fr::from(5))]); + + // Add poly2 to poly1 + poly1 += &poly2; + + // After addition, the result should be 5 + 7x + 3x^2 (coefficients [5, 7, 3]) + assert_eq!(poly1.coeffs, vec![Fr::from(5), Fr::from(7), Fr::from(3)]); + } + + #[test] + fn test_add_assign_mixed_with_smaller_degree() { + // Create a DensePolynomial: 1 + 2x (degree 1) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(1), Fr::from(2)], + }; + + // Create a SparsePolynomial: 3 + 4x + 5x^2 (degree 2) + let poly2 = SparsePolynomial::from_coefficients_slice(&[ + (0, Fr::from(3)), + (1, Fr::from(4)), + (2, Fr::from(5)), + ]); + + // Add poly2 to poly1 + poly1 += &poly2; + + // After addition, the result should be: 4 + 6x + 5x^2 (coefficients [4, 6, 5]) + assert_eq!(poly1.coeffs, vec![Fr::from(4), Fr::from(6), Fr::from(5)]); + } + + #[test] + fn test_add_assign_mixed_with_equal_degrees() { + // Create a DensePolynomial: 1 + 2x + 3x^2 (coefficients [1, 2, 3]) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(1), Fr::from(2), Fr::from(3)], + }; + + // Create a SparsePolynomial: 4 + 5x + 6x^2 (coefficients [4, 5, 6]) + let poly2 = SparsePolynomial::from_coefficients_slice(&[ + (0, Fr::from(4)), + (1, Fr::from(5)), + (2, Fr::from(6)), + ]); + + // Add poly2 to poly1 + poly1 += &poly2; + + // After addition, the result should be 5 + 7x + 9x^2 (coefficients [5, 7, 9]) + assert_eq!(poly1.coeffs, vec![Fr::from(5), Fr::from(7), Fr::from(9)]); + } + + #[test] + fn test_add_assign_mixed_with_larger_degree() { + // Create a DensePolynomial: 1 + 2x + 3x^2 + 4x^3 (degree 3) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)], + }; + + // Create a SparsePolynomial: 3 + 4x (degree 1) + let poly2 = + SparsePolynomial::from_coefficients_slice(&[(0, Fr::from(3)), (1, Fr::from(4))]); + + // Add poly2 to poly1 + poly1 += &poly2; + + // After addition, the result should be: 4 + 6x + 3x^2 + 4x^3 (coefficients [4, 6, 3, 4]) + assert_eq!( + poly1.coeffs, + vec![Fr::from(4), Fr::from(6), Fr::from(3), Fr::from(4)] + ); + } + + #[test] + fn test_truncate_leading_zeros_after_addition() { + // Create a DensePolynomial: 1 + 2x + 3x^2 (coefficients [1, 2, 3]) + let mut poly1 = DensePolynomial { + coeffs: vec![Fr::from(1), Fr::from(2), Fr::from(3)], + }; + + // Create a SparsePolynomial: -1 - 2x - 3x^2 (coefficients [-1, -2, -3]) + let poly2 = SparsePolynomial::from_coefficients_slice(&[ + (0, -Fr::from(1)), + (1, -Fr::from(2)), + (2, -Fr::from(3)), + ]); + + // Add poly2 to poly1, which should result in a zero polynomial + poly1 += &poly2; + + // The resulting polynomial should be zero, with an empty coefficient vector + assert!(poly1.is_zero()); + assert_eq!(poly1.coeffs, vec![]); + } }