From 1eb0a1659aa81859067128657235e2134e832658 Mon Sep 17 00:00:00 2001 From: Giovanni Bajo Date: Sun, 5 Jan 2025 01:01:49 +0100 Subject: [PATCH] Update sse2neon.h (af7596e) (#1749) Necessary to build the iQue branch on arm64 --- ares/n64/n64.hpp | 1 + thirdparty/sse2neon.h | 6179 +++++++++++++++++++++-------------------- 2 files changed, 3091 insertions(+), 3089 deletions(-) diff --git a/ares/n64/n64.hpp b/ares/n64/n64.hpp index 0a31c8ad43..ef2810b94c 100644 --- a/ares/n64/n64.hpp +++ b/ares/n64/n64.hpp @@ -15,6 +15,7 @@ #include using v128 = __m128i; #elif defined(ARCHITECTURE_ARM64) && !defined(COMPILER_MICROSOFT) +#define SSE2NEON_SUPPRESS_WARNINGS #include using v128 = __m128i; #endif diff --git a/thirdparty/sse2neon.h b/thirdparty/sse2neon.h index add8a2d064..79b90fe864 100644 --- a/thirdparty/sse2neon.h +++ b/thirdparty/sse2neon.h @@ -1,35 +1,11 @@ #ifndef SSE2NEON_H #define SSE2NEON_H -// This header file provides a simple API translation layer -// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions -// -// This header file does not yet translate all of the SSE intrinsics. -// -// Contributors to this work are: -// John W. Ratcliff -// Brandon Rowlett -// Ken Fast -// Eric van Beurden -// Alexander Potylitsin -// Hasindu Gamaarachchi -// Jim Huang -// Mark Cheng -// Malcolm James MacLeod -// Devin Hussey (easyaspi314) -// Sebastian Pop -// Developer Ecosystem Engineering -// Danila Kutenin -// François Turban (JishinMaster) -// Pei-Hsuan Hung -// Yang-Hao Yuan -// Syoyo Fujita -// Brecht Van Lommel -// Cuda Chen - /* * sse2neon is freely redistributable under the MIT License. * + * Copyright (c) 2015-2024 SSE2NEON Contributors. + * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights @@ -49,6 +25,34 @@ * SOFTWARE. */ +// This header file provides a simple API translation layer +// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions +// +// Contributors to this work are: +// John W. Ratcliff +// Brandon Rowlett +// Ken Fast +// Eric van Beurden +// Alexander Potylitsin +// Hasindu Gamaarachchi +// Jim Huang +// Mark Cheng +// Malcolm James MacLeod +// Devin Hussey (easyaspi314) +// Sebastian Pop +// Developer Ecosystem Engineering +// Danila Kutenin +// François Turban (JishinMaster) +// Pei-Hsuan Hung +// Yang-Hao Yuan +// Syoyo Fujita +// Brecht Van Lommel +// Jonathan Hue +// Cuda Chen +// Aymen Qader +// Anthony Roberts +// Sean Luchen + /* Tunable configurations */ /* Enable precise implementation of math operations @@ -59,7 +63,7 @@ #ifndef SSE2NEON_PRECISE_MINMAX #define SSE2NEON_PRECISE_MINMAX (0) #endif -/* _mm_rcp_ps and _mm_div_ps */ +/* _mm_rcp_ps */ #ifndef SSE2NEON_PRECISE_DIV #define SSE2NEON_PRECISE_DIV (0) #endif @@ -72,6 +76,13 @@ #define SSE2NEON_PRECISE_DP (0) #endif +/* Enable inclusion of windows.h on MSVC platforms + * This makes _mm_clflush functional on windows, as there is no builtin. + */ +#ifndef SSE2NEON_INCLUDE_WINDOWS_H +#define SSE2NEON_INCLUDE_WINDOWS_H (0) +#endif + /* compiler specific definitions */ #if defined(__GNUC__) || defined(__clang__) #pragma push_macro("FORCE_INLINE") @@ -80,8 +91,10 @@ #define ALIGN_STRUCT(x) __attribute__((aligned(x))) #define _sse2neon_likely(x) __builtin_expect(!!(x), 1) #define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0) -#else /* non-GNU / non-clang compilers */ -#warning "Macro name collisions may happen with unsupported compiler." +#elif defined(_MSC_VER) +#if _MSVC_TRADITIONAL +#error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead. +#endif #ifndef FORCE_INLINE #define FORCE_INLINE static inline #endif @@ -90,6 +103,17 @@ #endif #define _sse2neon_likely(x) (x) #define _sse2neon_unlikely(x) (x) +#else +#pragma message("Macro name collisions may happen with unsupported compilers.") +#endif + +#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 10 +#warning "GCC versions earlier than 10 are not supported." +#endif + +#if defined(__OPTIMIZE__) && !defined(SSE2NEON_SUPPRESS_WARNINGS) +#warning \ + "Report any potential compiler optimization issues when using SSE2NEON. See the 'Optimization' section at https://github.com/DLTcollab/sse2neon." #endif /* C language does not allow initializing a variable with a function call. */ @@ -99,16 +123,114 @@ #define _sse2neon_const const #endif +#include #include #include +#include -#if defined(_WIN32) -/* Definitions for _mm_{malloc,free} are provided by - * from both MinGW-w64 and MSVC. - */ +FORCE_INLINE double sse2neon_recast_u64_f64(uint64_t u64) +{ + double f64; + memcpy(&f64, &u64, sizeof(uint64_t)); + return f64; +} +FORCE_INLINE int64_t sse2neon_recast_f64_s64(double f64) +{ + int64_t i64; + memcpy(&i64, &f64, sizeof(uint64_t)); + return i64; +} + +#if defined(_WIN32) && !defined(__MINGW32__) +/* Definitions for _mm_{malloc,free} are provided by from MSVC. */ #define SSE2NEON_ALLOC_DEFINED #endif +/* If using MSVC */ +#ifdef _MSC_VER +#include +#if SSE2NEON_INCLUDE_WINDOWS_H +#include +#include +#endif + +#if !defined(__cplusplus) +#error SSE2NEON only supports C++ compilation with this compiler +#endif + +#ifdef SSE2NEON_ALLOC_DEFINED +#include +#endif + +#if (defined(_M_AMD64) || defined(__x86_64__)) || \ + (defined(_M_ARM64) || defined(__arm64__)) +#define SSE2NEON_HAS_BITSCAN64 +#endif +#endif + +#if defined(__GNUC__) || defined(__clang__) +#define _sse2neon_define0(type, s, body) \ + __extension__({ \ + type _a = (s); \ + body \ + }) +#define _sse2neon_define1(type, s, body) \ + __extension__({ \ + type _a = (s); \ + body \ + }) +#define _sse2neon_define2(type, a, b, body) \ + __extension__({ \ + type _a = (a), _b = (b); \ + body \ + }) +#define _sse2neon_return(ret) (ret) +#else +#define _sse2neon_define0(type, a, body) [=](type _a) { body }(a) +#define _sse2neon_define1(type, a, body) [](type _a) { body }(a) +#define _sse2neon_define2(type, a, b, body) \ + [](type _a, type _b) { body }((a), (b)) +#define _sse2neon_return(ret) return ret +#endif + +#define _sse2neon_init(...) \ + { \ + __VA_ARGS__ \ + } + +/* Compiler barrier */ +#if defined(_MSC_VER) && !defined(__clang__) +#define SSE2NEON_BARRIER() _ReadWriteBarrier() +#else +#define SSE2NEON_BARRIER() \ + do { \ + __asm__ __volatile__("" ::: "memory"); \ + (void) 0; \ + } while (0) +#endif + +/* Memory barriers + * __atomic_thread_fence does not include a compiler barrier; instead, + * the barrier is part of __atomic_load/__atomic_store's "volatile-like" + * semantics. + */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#include +#endif + +FORCE_INLINE void _sse2neon_smp_mb(void) +{ + SSE2NEON_BARRIER(); +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ + !defined(__STDC_NO_ATOMICS__) + atomic_thread_fence(memory_order_seq_cst); +#elif defined(__GNUC__) || defined(__clang__) + __atomic_thread_fence(__ATOMIC_SEQ_CST); +#else /* MSVC */ + __dmb(_ARM64_BARRIER_ISH); +#endif +} + /* Architecture-specific build options */ /* FIXME: #pragma GCC push_options is only available on GCC */ #if defined(__GNUC__) @@ -124,8 +246,8 @@ #pragma GCC push_options #pragma GCC target("fpu=neon") #endif -#elif defined(__aarch64__) -#if !defined(__clang__) +#elif defined(__aarch64__) || defined(_M_ARM64) +#if !defined(__clang__) && !defined(_MSC_VER) #pragma GCC push_options #pragma GCC target("+simd") #endif @@ -134,23 +256,36 @@ #error \ "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." #endif -#if !defined(__clang__) +#if !defined(__clang__) && !defined(_MSC_VER) #pragma GCC push_options #endif #else -#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." +#error \ + "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A \ +(you could try setting target explicitly with -march or -mcpu)" #endif #endif #include -#if !defined(__aarch64__) && (__ARM_ARCH == 8) +#if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8) #if defined __has_include && __has_include() #include #endif #endif -/* Rounding functions require either Aarch64 instructions or libm failback */ -#if !defined(__aarch64__) +/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD + * and other Arm microarchitectures use. + * From sysctl -a on Apple M1: + * hw.cachelinesize: 128 + */ +#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) +#define SSE2NEON_CACHELINE_SIZE 128 +#else +#define SSE2NEON_CACHELINE_SIZE 64 +#endif + +/* Rounding functions require either Aarch64 instructions or libm fallback */ +#if !defined(__aarch64__) && !defined(_M_ARM64) #include #endif @@ -159,7 +294,7 @@ * To write or access to these registers in user mode, * we have to perform syscall instead. */ -#if !defined(__aarch64__) +#if (!defined(__aarch64__) && !defined(_M_ARM64)) #include #endif @@ -172,6 +307,14 @@ #define __has_builtin(x) HAS##x #define HAS__builtin_popcount 1 #define HAS__builtin_popcountll 1 + +// __builtin_shuffle introduced in GCC 4.7.0 +#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) +#define HAS__builtin_shuffle 1 +#else +#define HAS__builtin_shuffle 0 +#endif + #define HAS__builtin_shufflevector 0 #define HAS__builtin_nontemporal_store 0 #else @@ -190,6 +333,35 @@ #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) +/** + * MACRO for shuffle parameter for _mm_shuffle_pd(). + * Argument fp1 is a digit[01] that represents the fp from argument "b" + * of mm_shuffle_pd that will be placed in fp1 of result. + * fp0 is a digit[01] that represents the fp from argument "a" of mm_shuffle_pd + * that will be placed in fp0 of result. + */ +#define _MM_SHUFFLE2(fp1, fp0) (((fp1) << 1) | (fp0)) + +#if __has_builtin(__builtin_shufflevector) +#define _sse2neon_shuffle(type, a, b, ...) \ + __builtin_shufflevector(a, b, __VA_ARGS__) +#elif __has_builtin(__builtin_shuffle) +#define _sse2neon_shuffle(type, a, b, ...) \ + __extension__({ \ + type tmp = {__VA_ARGS__}; \ + __builtin_shuffle(a, b, tmp); \ + }) +#endif + +#ifdef _sse2neon_shuffle +#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) +#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) +#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) +#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) +#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) +#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) +#endif + /* Rounding mode macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 @@ -231,13 +403,18 @@ typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */ // On ARM 32-bit architecture, the float64x2_t is not supported. // The data type __m128d should be represented in a different way for related // intrinsic conversion. -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ #else typedef float32x4_t __m128d; #endif typedef int64x2_t __m128i; /* 128-bit vector containing integers */ +// Some intrinsics operate on unaligned data types. +typedef int16_t ALIGN_STRUCT(1) unaligned_int16_t; +typedef int32_t ALIGN_STRUCT(1) unaligned_int32_t; +typedef int64_t ALIGN_STRUCT(1) unaligned_int64_t; + // __int64 is defined in the Intrinsics Guide which maps to different datatype // in different data model #if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) @@ -327,7 +504,7 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */ #define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x) -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) #define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x) #define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x) @@ -364,7 +541,7 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */ // by applications which attempt to access the contents of an __m128 struct // directly. It is important to note that accessing the __m128 struct directly // is bad coding practice by Microsoft: @see: -// https://docs.microsoft.com/en-us/cpp/cpp/m128 +// https://learn.microsoft.com/en-us/cpp/cpp/m128 // // However, some legacy source code may try to access the contents of an __m128 // struct directly so the developer can use the SIMDVec as an alias for it. Any @@ -408,7 +585,7 @@ typedef union ALIGN_STRUCT(16) SIMDVec { // Function declaration // SSE -FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(); +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void); FORCE_INLINE __m128 _mm_move_ss(__m128, __m128); FORCE_INLINE __m128 _mm_or_ps(__m128, __m128); FORCE_INLINE __m128 _mm_set_ps1(float); @@ -424,7 +601,7 @@ FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int); FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t); FORCE_INLINE __m128d _mm_set_pd(double, double); FORCE_INLINE __m128i _mm_set1_epi32(int); -FORCE_INLINE __m128i _mm_setzero_si128(); +FORCE_INLINE __m128i _mm_setzero_si128(void); // SSE4.1 FORCE_INLINE __m128d _mm_ceil_pd(__m128d); FORCE_INLINE __m128 _mm_ceil_ps(__m128); @@ -439,7 +616,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); // Older gcc does not define vld1q_u8_x4 type #if defined(__GNUC__) && !defined(__clang__) && \ - ((__GNUC__ <= 12 && defined(__arm__)) || \ + ((__GNUC__ <= 13 && defined(__arm__)) || \ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ (__GNUC__ <= 9 && defined(__aarch64__))) FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) @@ -459,6 +636,57 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) } #endif +#if !defined(__aarch64__) && !defined(_M_ARM64) +/* emulate vaddv u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); +} +#else +// Wraps vaddv_u8 +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + return vaddv_u8(v8); +} +#endif + +#if !defined(__aarch64__) && !defined(_M_ARM64) +/* emulate vaddvq u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} +#else +// Wraps vaddvq_u8 +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + return vaddvq_u8(a); +} +#endif + +#if !defined(__aarch64__) && !defined(_M_ARM64) +/* emulate vaddvq u16 variant */ +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#else +// Wraps vaddvq_u16 +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + return vaddvq_u16(a); +} +#endif + /* Function Naming Conventions * The naming convention of SSE intrinsics is straightforward. A generic SSE * intrinsic function is given as follows: @@ -471,7 +699,7 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) * This last part, , is a little complicated. It identifies the * content of the input values, and can be set to any of the following values: * + ps - vectors contain floats (ps stands for packed single-precision) - * + pd - vectors cantain doubles (pd stands for packed double-precision) + * + pd - vectors contain doubles (pd stands for packed double-precision) * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit * signed integers * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit @@ -493,59 +721,14 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) * 4, 5, 12, 13, 6, 7, 14, 15); * // Shuffle packed 8-bit integers * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb - * - * Data (Number, Binary, Byte Index): - +------+------+-------------+------+------+-------------+ - | 1 | 2 | 3 | 4 | Number - +------+------+------+------+------+------+------+------+ - | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary - +------+------+------+------+------+------+------+------+ - | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 5 | 6 | 7 | 8 | Number - +------+------+------+------+------+------+------+------+ - | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary - +------+------+------+------+------+------+------+------+ - | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index - +------+------+------+------+------+------+------+------+ - * Index (Byte Index): - +------+------+------+------+------+------+------+------+ - | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | - +------+------+------+------+------+------+------+------+ - * Result: - +------+------+------+------+------+------+------+------+ - | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index - +------+------+------+------+------+------+------+------+ - | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary - +------+------+------+------+------+------+------+------+ - | 256 | 2 | 5 | 6 | Number - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index - +------+------+------+------+------+------+------+------+ - | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary - +------+------+------+------+------+------+------+------+ - | 3 | 7 | 4 | 8 | Number - +------+------+------+------+------+------+-------------+ */ -/* Constants for use with _mm_prefetch. */ +/* Constants for use with _mm_prefetch. */ enum _mm_hint { - _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ - _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ - _MM_HINT_T1 = 2, /* load data to L2 cache only */ - _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ - _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */ - _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */ - _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */ - _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */ + _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ + _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ + _MM_HINT_T1 = 2, /* load data to L2 cache only */ + _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ }; // The bit field mapping to the FPCR(floating-point control register) @@ -556,7 +739,7 @@ typedef struct { uint8_t bit23 : 1; uint8_t bit24 : 1; uint8_t res2 : 7; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint32_t res3; #endif } fpcr_bitfield; @@ -696,24 +879,24 @@ FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); } -// Kahan summation for accurate summation of floating-point numbers. -// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html -FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) -{ - y -= *c; - float t = *sum + y; - *c = (t - *sum) - y; - *sum = t; -} - -#if defined(__ARM_FEATURE_CRYPTO) && \ - (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)) +// For MSVC, we check only if it is ARM64, as every single ARM64 processor +// supported by WoA has crypto extensions. If this changes in the future, +// this can be verified via the runtime-only method of: +// IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) +#if (defined(_M_ARM64) && !defined(__clang__)) || \ + (defined(__ARM_FEATURE_CRYPTO) && \ + (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))) // Wraps vmull_p64 FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) { poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); +#if defined(_MSC_VER) && !defined(__clang__) + __n64 a1 = {a}, b1 = {b}; + return vreinterpretq_u64_p128(vmull_p64(a1, b1)); +#else return vreinterpretq_u64_p128(vmull_p64(a, b)); +#endif } #else // ARMv7 polyfill // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. @@ -831,21 +1014,17 @@ static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) // return ret; // } #define _mm_shuffle_epi32_default(a, imm) \ - __extension__({ \ - int32x4_t ret; \ - ret = vmovq_n_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \ - ret = vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \ - ret, 1); \ - ret = vsetq_lane_s32( \ + vreinterpretq_m128i_s32(vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ + vsetq_lane_s32( \ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ - ret, 2); \ - ret = vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ - ret, 3); \ - vreinterpretq_m128i_s32(ret); \ - }) + vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \ + ((imm) >> 2) & 0x3), \ + vmovq_n_s32(vgetq_lane_s32( \ + vreinterpretq_s32_m128i(a), (imm) & (0x3))), \ + 1), \ + 2), \ + 3)) // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of a and places it into the high end of the result. @@ -929,25 +1108,18 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); } -// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) -// int imm) -#if defined(__aarch64__) -#define _mm_shuffle_epi32_splat(a, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ - }) +#if defined(__aarch64__) || defined(_M_ARM64) +#define _mm_shuffle_epi32_splat(a, imm) \ + vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))) #else -#define _mm_shuffle_epi32_splat(a, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ - }) +#define _mm_shuffle_epi32_splat(a, imm) \ + vreinterpretq_m128i_s32( \ + vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))) #endif -// NEON does not support a general purpose permute intrinsic -// Selects four specific single-precision, floating-point values from a and b, -// based on the mask i. +// NEON does not support a general purpose permute intrinsic. +// Shuffle single-precision (32-bit) floating-point elements in a using the +// control in imm8, and store the results in dst. // // C equivalent: // __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, @@ -958,33 +1130,27 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) // return ret; // } // -// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx -#define _mm_shuffle_ps_default(a, b, imm) \ - __extension__({ \ - float32x4_t ret; \ - ret = vmovq_n_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \ - ret = vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ - ret, 1); \ - ret = vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ - ret, 2); \ - ret = vsetq_lane_f32( \ - vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ - ret, 3); \ - vreinterpretq_m128_f32(ret); \ - }) - -// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100) -// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps +#define _mm_shuffle_ps_default(a, b, imm) \ + vreinterpretq_m128_f32(vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ + vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ + vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ + vmovq_n_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \ + 1), \ + 2), \ + 3)) + +// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8. +// Store the results in the low 64 bits of dst, with the high 64 bits being +// copied from a to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16 #define _mm_shufflelo_epi16_function(a, imm) \ - __extension__({ \ - int16x8_t ret = vreinterpretq_s16_m128i(a); \ + _sse2neon_define1( \ + __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ int16x4_t lowBits = vget_low_s16(ret); \ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ @@ -993,18 +1159,15 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) 2); \ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ 3); \ - vreinterpretq_m128i_s16(ret); \ - }) + _sse2neon_return(vreinterpretq_m128i_s16(ret));) -// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx -// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) +// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8. +// Store the results in the high 64 bits of dst, with the low 64 bits being +// copied from a to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16 #define _mm_shufflehi_epi16_function(a, imm) \ - __extension__({ \ - int16x8_t ret = vreinterpretq_s16_m128i(a); \ + _sse2neon_define1( \ + __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ int16x4_t highBits = vget_high_s16(ret); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ @@ -1013,8 +1176,7 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) 6); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ 7); \ - vreinterpretq_m128i_s16(ret); \ - }) + _sse2neon_return(vreinterpretq_m128i_s16(ret));) /* MMX */ @@ -1023,22 +1185,19 @@ FORCE_INLINE void _mm_empty(void) {} /* SSE */ -// Adds the four single-precision, floating-point values of a and b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +// Add packed single-precision (32-bit) floating-point elements in a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// adds the scalar single-precision floating point values of a and b. -// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +// Add the lower single-precision (32-bit) floating-point element in a and b, +// store the result in the lower element of dst, and copy the upper 3 packed +// elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); @@ -1047,30 +1206,18 @@ FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) return vreinterpretq_m128_f32(vaddq_f32(a, value)); } -// Computes the bitwise AND of the four single-precision, floating-point values -// of a and b. -// -// r0 := a0 & b0 -// r1 := a1 & b1 -// r2 := a2 & b2 -// r3 := a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +// Compute the bitwise AND of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); } -// Computes the bitwise AND-NOT of the four single-precision, floating-point -// values of a and b. -// -// r0 := ~a0 & b0 -// r1 := ~a1 & b1 -// r2 := ~a2 & b2 -// r3 := ~a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +// Compute the bitwise NOT of packed single-precision (32-bit) floating-point +// elements in a and then AND with b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -1080,13 +1227,7 @@ FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) // Average packed unsigned 16-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16( @@ -1095,186 +1236,199 @@ FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) // Average packed unsigned 8-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Compares for equality. -// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for equality, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for equality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for equality, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); } -// Compares for greater than or equal. -// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for greater-than-or-equal, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpge_ps(a, b)); } -// Compares for greater than. -// -// r0 := (a0 > b0) ? 0xffffffff : 0x0 -// r1 := (a1 > b1) ? 0xffffffff : 0x0 -// r2 := (a2 > b2) ? 0xffffffff : 0x0 -// r3 := (a3 > b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for greater-than, store the result in the lower element of dst, and copy +// the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); } -// Compares for less than or equal. -// -// r0 := (a0 <= b0) ? 0xffffffff : 0x0 -// r1 := (a1 <= b1) ? 0xffffffff : 0x0 -// r2 := (a2 <= b2) ? 0xffffffff : 0x0 -// r3 := (a3 <= b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for less-than-or-equal, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmple_ps(a, b)); } -// Compares for less than -// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for less than -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for less-than, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmplt_ps(a, b)); } -// Compares for inequality. -// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for inequality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-equal, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); } -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-greater-than-or-equal, store the result in the lower element of +// dst, and copy the upper 3 packed elements from a to the upper elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); } -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-greater-than, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); } -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-less-than-or-equal, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); } -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-less-than, store the result in the lower element of dst, and copy +// the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); } -// Compares the four 32-bit floats in a and b to check if any values are NaN. -// Ordered compare between each value returns true for "orderable" and false for -// "not orderable" (NaN). -// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see -// also: +// Compare packed single-precision (32-bit) floating-point elements in a and b +// to see if neither is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps +// +// See also: // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) @@ -1289,15 +1443,18 @@ FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); } -// Compares for ordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b to see if neither is NaN, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpord_ps(a, b)); } -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// to see if either is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) { uint32x4_t f32a = @@ -1307,16 +1464,18 @@ FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); } -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b to see if either is NaN, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); } -// Compares the lower single-precision floating point scalar values of a and b -// using an equality operation. : -// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for equality, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) { uint32x4_t a_eq_b = @@ -1324,9 +1483,9 @@ FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_eq_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than or equal operation. : -// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for greater-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) { uint32x4_t a_ge_b = @@ -1334,9 +1493,9 @@ FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_ge_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than operation. : -// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for greater-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) { uint32x4_t a_gt_b = @@ -1344,9 +1503,9 @@ FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_gt_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a less than or equal operation. : -// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for less-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) { uint32x4_t a_le_b = @@ -1354,11 +1513,9 @@ FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_le_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a less than operation. : -// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important -// note!! The documentation on MSDN is incorrect! If either of the values is a -// NAN the docs say you will get a one, but in fact, it will return a zero!! +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for less-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) { uint32x4_t a_lt_b = @@ -1366,9 +1523,9 @@ FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_lt_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using an inequality operation. : -// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for not-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) { return !_mm_comieq_ss(a, b); @@ -1378,13 +1535,7 @@ FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) // (32-bit) floating-point elements, store the results in the lower 2 elements // of dst, and copy the upper 2 packed elements from a to the upper elements of // dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1394,16 +1545,11 @@ FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpret_m64_s32( vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); #else @@ -1415,11 +1561,7 @@ FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) // Convert the signed 32-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) { return vreinterpretq_m128_f32( @@ -1428,10 +1570,11 @@ FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si FORCE_INLINE int _mm_cvt_ss2si(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), 0); #else @@ -1443,14 +1586,7 @@ FORCE_INLINE int _mm_cvt_ss2si(__m128 a) // Convert packed 16-bit integers in a to packed single-precision (32-bit) // floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1460,13 +1596,7 @@ FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) // Convert packed 32-bit integers in b to packed single-precision (32-bit) // floating-point elements, store the results in the lower 2 elements of dst, // and copy the upper 2 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1479,13 +1609,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // of dst, then convert the packed signed 32-bit integers in b to // single-precision (32-bit) floating-point element, and store the results in // the upper 2 elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(a[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(a[63:32]) -// dst[95:64] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:96] := Convert_Int32_To_FP32(b[63:32]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1494,14 +1618,7 @@ FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) // Convert the lower packed 8-bit integers in a to packed single-precision // (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1512,96 +1629,32 @@ FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) // packed 16-bit integers, and store the results in dst. Note: this intrinsic // will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and // 0x7FFFFFFF. -// -// FOR j := 0 to 3 -// i := 16*j -// k := 32*j -// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF) -// dst[i+15:i] := 0x7FFF -// ELSE -// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) { - const __m128 i16Min = _mm_set_ps1((float) INT16_MIN); - const __m128 i16Max = _mm_set_ps1((float) INT16_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32))); + return vreinterpret_m64_s16( + vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); } // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 8-bit integers, and store the results in lower 4 elements of dst. // Note: this intrinsic will generate 0x7F, rather than 0x80, for input values // between 0x7F and 0x7FFFFFFF. -// -// FOR j := 0 to 3 -// i := 8*j -// k := 32*j -// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF) -// dst[i+7:i] := 0x7F -// ELSE -// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) { - const __m128 i8Min = _mm_set_ps1((float) INT8_MIN); - const __m128 i8Max = _mm_set_ps1((float) INT8_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32)); - int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16)); - static const uint32_t bitMask[2] = {0xFFFFFFFF, 0}; - int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask)); - - return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0))); + return vreinterpret_m64_s8(vqmovn_s16( + vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); } // Convert packed unsigned 16-bit integers in a to packed single-precision // (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1611,14 +1664,7 @@ FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) // Convert the lower packed unsigned 8-bit integers in a to packed // single-precision (32-bit) floating-point elements, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_u32( @@ -1628,21 +1674,13 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // Convert the signed 32-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) // Convert the signed 64-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int64_To_FP32(b[63:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) { return vreinterpretq_m128_f32( @@ -1650,10 +1688,7 @@ FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) } // Copy the lower single-precision (32-bit) floating-point element of a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1661,21 +1696,16 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); #else float32_t data = vgetq_lane_f32( @@ -1686,13 +1716,7 @@ FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) { return vreinterpret_m64_s32( @@ -1701,10 +1725,7 @@ FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) { return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); @@ -1712,60 +1733,49 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) { return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); } -// Divides the four single-precision, floating-point values of a and b. -// -// r0 := a0 / b0 -// r1 := a1 / b1 -// r2 := a2 / b2 -// r3 := a3 / b3 -// -// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +// Divide packed single-precision (32-bit) floating-point elements in a by +// packed elements in b, and store the results in dst. +// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement +// division by multiplying a by b's reciprocal before using the Newton-Raphson +// method to approximate the results. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) { -#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32( vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); #else float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); -#if SSE2NEON_PRECISE_DIV // Additional Netwon-Raphson iteration for accuracy recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); -#endif return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); #endif } -// Divides the scalar single-precision floating point value of a by b. -// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +// Divide the lower single-precision (32-bit) floating-point element in a by the +// lower single-precision (32-bit) floating-point element in b, store the result +// in the lower element of dst, and copy the upper 3 packed elements from a to +// the upper elements of dst. +// Warning: ARMv7-A does not produce the same result compared to Intel and not +// IEEE-compliant. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) { float32_t value = @@ -1776,36 +1786,60 @@ FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 #define _mm_extract_pi16(a, imm) \ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) // Free aligned memory that was allocated with _mm_malloc. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free #if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void _mm_free(void *addr) { +#if defined(_WIN32) + _aligned_free(addr); +#else free(addr); +#endif } #endif +FORCE_INLINE uint64_t _sse2neon_get_fpcr(void) +{ + uint64_t value; +#if defined(_MSC_VER) && !defined(__clang__) + value = _ReadStatusReg(ARM64_FPCR); +#else + __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */ +#endif + return value; +} + +FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value) +{ +#if defined(_MSC_VER) && !defined(__clang__) + _WriteStatusReg(ARM64_FPCR, value); +#else + __asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */ +#endif +} + // Macro: Get the flush zero bits from the MXCSR control and status register. // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or // _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE -FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE +FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void) { union { fpcr_bitfield field; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint64_t value; #else uint32_t value; #endif } r; -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#if defined(__aarch64__) || defined(_M_ARM64) + r.value = _sse2neon_get_fpcr(); #else __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif @@ -1816,42 +1850,36 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() // Macro: Get the rounding mode bits from the MXCSR control and status register. // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE -FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - if (r.field.bit22) { - return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP; - } else { - return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST; +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void) +{ + switch (fegetround()) { + case FE_TONEAREST: + return _MM_ROUND_NEAREST; + case FE_DOWNWARD: + return _MM_ROUND_DOWN; + case FE_UPWARD: + return _MM_ROUND_UP; + case FE_TOWARDZERO: + return _MM_ROUND_TOWARD_ZERO; + default: + // fegetround() must return _MM_ROUND_NEAREST, _MM_ROUND_DOWN, + // _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO on success. all the other error + // cases we treat them as FE_TOWARDZERO (truncate). + return _MM_ROUND_TOWARD_ZERO; } } // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 -#define _mm_insert_pi16(a, b, imm) \ - __extension__({ \ - vreinterpret_m64_s16( \ - vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \ - }) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 +#define _mm_insert_pi16(a, b, imm) \ + vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))) -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from memory into dst. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps FORCE_INLINE __m128 _mm_load_ps(const float *p) { return vreinterpretq_m128_f32(vld1q_f32(p)); @@ -1865,52 +1893,40 @@ FORCE_INLINE __m128 _mm_load_ps(const float *p) // dst[95:64] := MEM[mem_addr+31:mem_addr] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 #define _mm_load_ps1 _mm_load1_ps -// Loads an single - precision, floating - point value into the low word and -// clears the upper three words. -// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +// Load a single-precision (32-bit) floating-point element from memory into the +// lower of dst, and zero the upper 3 elements. mem_addr does not need to be +// aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss FORCE_INLINE __m128 _mm_load_ss(const float *p) { return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); } -// Loads a single single-precision, floating-point value, copying it into all -// four words -// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +// Load a single-precision (32-bit) floating-point element from memory into all +// elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps FORCE_INLINE __m128 _mm_load1_ps(const float *p) { return vreinterpretq_m128_f32(vld1q_dup_f32(p)); } -// Sets the upper two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the lower two values are passed -// through from a. -// -// r0 := a0 -// r1 := a1 -// r2 := *p0 -// r3 := *p1 -// -// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx +// Load 2 single-precision (32-bit) floating-point elements from memory into the +// upper 2 elements of dst, and copy the lower 2 elements from a to dst. +// mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) { return vreinterpretq_m128_f32( vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); } -// Sets the lower two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the upper two values are passed -// through from a. -// -// Return Value -// r0 := *p0 -// r1 := *p1 -// r2 := a2 -// r3 := a3 -// -// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx +// Load 2 single-precision (32-bit) floating-point elements from memory into the +// lower 2 elements of dst, and copy the upper 2 elements from a to dst. +// mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) { return vreinterpretq_m128_f32( @@ -1920,21 +1936,17 @@ FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) // Load 4 single-precision (32-bit) floating-point elements from memory into dst // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[31:0] := MEM[mem_addr+127:mem_addr+96] -// dst[63:32] := MEM[mem_addr+95:mem_addr+64] -// dst[95:64] := MEM[mem_addr+63:mem_addr+32] -// dst[127:96] := MEM[mem_addr+31:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps FORCE_INLINE __m128 _mm_loadr_ps(const float *p) { float32x4_t v = vrev64q_f32(vld1q_f32(p)); return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); } -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from memory into dst. mem_addr does not need to be aligned on any +// particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps FORCE_INLINE __m128 _mm_loadu_ps(const float *p) { // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are @@ -1943,32 +1955,25 @@ FORCE_INLINE __m128 _mm_loadu_ps(const float *p) } // Load unaligned 16-bit integer from memory into the first element of dst. -// -// dst[15:0] := MEM[mem_addr+15:mem_addr] -// dst[MAX:16] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 FORCE_INLINE __m128i _mm_loadu_si16(const void *p) { return vreinterpretq_m128i_s16( - vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0)); + vsetq_lane_s16(*(const unaligned_int16_t *) p, vdupq_n_s16(0), 0)); } // Load unaligned 64-bit integer from memory into the first element of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[MAX:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 FORCE_INLINE __m128i _mm_loadu_si64(const void *p) { return vreinterpretq_m128i_s64( - vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); + vsetq_lane_s64(*(const unaligned_int64_t *) p, vdupq_n_s64(0), 0)); } -// Allocate aligned blocks of memory. -// https://software.intel.com/en-us/ -// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +// Allocate size bytes of memory, aligned to the alignment specified in align, +// and return a pointer to the allocated memory. _mm_free should be used to free +// memory that is allocated with _mm_malloc. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc #if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void *_mm_malloc(size_t size, size_t align) { @@ -1977,8 +1982,14 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align) return malloc(size); if (align == 2 || (sizeof(void *) == 8 && align == 4)) align = sizeof(void *); +#if defined(_WIN32) + ptr = _aligned_malloc(size, align); + if (ptr) + return ptr; +#else if (!posix_memalign(&ptr, align, size)) return ptr; +#endif return NULL; } #endif @@ -1986,7 +1997,7 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) { int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); @@ -2000,27 +2011,23 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); } -// Computes the maximums of the four single-precision, floating-point values of -// a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b, +// and store packed maximum values in dst. dst does not follow the IEEE Standard +// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or +// signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) { #if SSE2NEON_PRECISE_MINMAX @@ -2035,22 +2042,19 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Computes the maximum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b, store the maximum value in the lower element of dst, and copy the upper 3 +// packed elements from a to the upper element of dst. dst does not follow the +// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when +// inputs are NaN or signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); @@ -2060,22 +2064,18 @@ FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); } -// Computes the minima of the four single-precision, floating-point values of a -// and b. -// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b, +// and store packed minimum values in dst. dst does not follow the IEEE Standard +// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or +// signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) { #if SSE2NEON_PRECISE_MINMAX @@ -2090,22 +2090,19 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Computes the minimum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b, store the minimum value in the lower element of dst, and copy the upper 3 +// packed elements from a to the upper element of dst. dst does not follow the +// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when +// inputs are NaN or signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); @@ -2113,8 +2110,10 @@ FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); } -// Sets the low word to the single-precision, floating-point value of b -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100) +// Move the lower single-precision (32-bit) floating-point element from b to the +// lower element of dst, and copy the upper 3 packed elements from a to the +// upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2122,25 +2121,26 @@ FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) vreinterpretq_f32_m128(a), 0)); } -// Moves the upper two values of B into the lower two values of A. -// -// r3 := a3 -// r2 := a2 -// r1 := b3 -// r0 := b2 -FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) -{ - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); +// Move the upper 2 single-precision (32-bit) floating-point elements from b to +// the lower 2 elements of dst, and copy the upper 2 elements from a to the +// upper 2 elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps +FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b) +{ +#if defined(aarch64__) + return vreinterpretq_m128_u64( + vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a))); +#else + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); +#endif } -// Moves the lower two values of B into the upper two values of A. -// -// r3 := b1 -// r2 := b0 -// r1 := a1 -// r0 := a0 +// Move the lower 2 single-precision (32-bit) floating-point elements from b to +// the upper 2 elements of dst, and copy the lower 2 elements from a to the +// lower 2 elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) { float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); @@ -2150,14 +2150,14 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 FORCE_INLINE int _mm_movemask_pi8(__m64 a) { uint8x8_t input = vreinterpret_u8_m64(a); -#if defined(__aarch64__) - static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7}; +#if defined(__aarch64__) || defined(_M_ARM64) + static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7}; uint8x8_t tmp = vshr_n_u8(input, 7); - return vaddv_u8(vshl_u8(tmp, shift)); + return vaddv_u8(vshl_u8(tmp, vld1_s8(shift))); #else // Refer the implementation of `_mm_movemask_epi8` uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); @@ -2169,17 +2169,16 @@ FORCE_INLINE int _mm_movemask_pi8(__m64 a) #endif } -// NEON does not provide this method -// Creates a 4-bit mask from the most significant bits of the four -// single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +// Set each bit of mask dst based on the most significant bit of the +// corresponding packed single-precision (32-bit) floating-point element in a. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps FORCE_INLINE int _mm_movemask_ps(__m128 a) { uint32x4_t input = vreinterpretq_u32_m128(a); -#if defined(__aarch64__) - static const int32x4_t shift = {0, 1, 2, 3}; +#if defined(__aarch64__) || defined(_M_ARM64) + static const int32_t shift[4] = {0, 1, 2, 3}; uint32x4_t tmp = vshrq_n_u32(input, 31); - return vaddvq_u32(vshlq_u32(tmp, shift)); + return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift))); #else // Uses the exact same method as _mm_movemask_epi8, see that for details. // Shift out everything but the sign bits with a 32-bit unsigned shift @@ -2193,14 +2192,9 @@ FORCE_INLINE int _mm_movemask_ps(__m128 a) #endif } -// Multiplies the four single-precision, floating-point values of a and b. -// -// r0 := a0 * b0 -// r1 := a1 * b1 -// r2 := a2 * b2 -// r3 := a3 * b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +// Multiply packed single-precision (32-bit) floating-point elements in a and b, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2210,11 +2204,7 @@ FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) // Multiply the lower single-precision (32-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper 3 packed // elements from a to the upper elements of dst. -// -// dst[31:0] := a[31:0] * b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_mul_ps(a, b)); @@ -2223,16 +2213,16 @@ FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16(vshrn_n_u32( vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); } -// Computes the bitwise OR of the four single-precision, floating-point values -// of a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +// Compute the bitwise OR of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -2241,91 +2231,110 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // Average packed unsigned 8-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb #define _m_pavgb(a, b) _mm_avg_pu8(a, b) // Average packed unsigned 16-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw #define _m_pavgw(a, b) _mm_avg_pu16(a, b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw #define _m_pmaxsw(a, b) _mm_max_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub #define _m_pmaxub(a, b) _mm_max_pu8(a, b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw #define _m_pminsw(a, b) _mm_min_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub #define _m_pminub(a, b) _mm_min_pu8(a, b) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb #define _m_pmovmskb(a) _mm_movemask_pi8(a) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) -// Loads one cache line of data from address p to a location closer to the -// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx -FORCE_INLINE void _mm_prefetch(const void *p, int i) +// Fetch the line of data from memory that contains address p to a location in +// the cache hierarchy specified by the locality hint i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch +FORCE_INLINE void _mm_prefetch(char const *p, int i) { (void) i; - __builtin_prefetch(p); +#if defined(_MSC_VER) && !defined(__clang__) + switch (i) { + case _MM_HINT_NTA: + __prefetch2(p, 1); + break; + case _MM_HINT_T0: + __prefetch2(p, 0); + break; + case _MM_HINT_T1: + __prefetch2(p, 2); + break; + case _MM_HINT_T2: + __prefetch2(p, 4); + break; + } +#else + switch (i) { + case _MM_HINT_NTA: + __builtin_prefetch(p, 0, 0); + break; + case _MM_HINT_T0: + __builtin_prefetch(p, 0, 3); + break; + case _MM_HINT_T1: + __builtin_prefetch(p, 0, 2); + break; + case _MM_HINT_T2: + __builtin_prefetch(p, 0, 1); + break; + } +#endif } // Compute the absolute differences of packed unsigned 8-bit integers in a and // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw #define _m_psadbw(a, b) _mm_sad_pu8(a, b) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) // Compute the approximate reciprocal of packed single-precision (32-bit) // floating-point elements in a, and store the results in dst. The maximum // relative error for this approximation is less than 1.5*2^-12. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); @@ -2341,30 +2350,42 @@ FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) // floating-point element in a, store the result in the lower element of dst, // and copy the upper 3 packed elements from a to the upper elements of dst. The // maximum relative error for this approximation is less than 1.5*2^-12. -// -// dst[31:0] := (1.0 / a[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) { return _mm_move_ss(a, _mm_rcp_ps(a)); } -// Computes the approximations of the reciprocal square roots of the four -// single-precision floating point values of in. -// The current precision is 1% error. -// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +// Compute the approximate reciprocal square root of packed single-precision +// (32-bit) floating-point elements in a, and store the results in dst. The +// maximum relative error for this approximation is less than 1.5*2^-12. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) { float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); -#if SSE2NEON_PRECISE_SQRT - // Additional Netwon-Raphson iteration for accuracy + + // Generate masks for detecting whether input has any 0.0f/-0.0f + // (which becomes positive/negative infinity by IEEE-754 arithmetic rules). + const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); + const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000); + const uint32x4_t has_pos_zero = + vceqq_u32(pos_inf, vreinterpretq_u32_f32(out)); + const uint32x4_t has_neg_zero = + vceqq_u32(neg_inf, vreinterpretq_u32_f32(out)); + out = vmulq_f32( out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); +#if SSE2NEON_PRECISE_SQRT + // Additional Netwon-Raphson iteration for accuracy out = vmulq_f32( out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); #endif + + // Set output vector element to infinity/negative-infinity if + // the corresponding input vector element is 0.0f/-0.0f. + out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out); + out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out); + return vreinterpretq_m128_f32(out); } @@ -2372,7 +2393,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) // (32-bit) floating-point element in a, store the result in the lower element // of dst, and copy the upper 3 packed elements from a to the upper elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) { return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); @@ -2382,57 +2403,59 @@ FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) { uint64x1_t t = vpaddl_u32(vpaddl_u16( vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))))); return vreinterpret_m64_u16( - vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0)); + vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0)); } // Macro: Set the flush zero bits of the MXCSR control and status register to // the value in unsigned 32-bit integer a. The flush zero may contain any of the // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) { // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, // regardless of the value of the FZ bit. union { fpcr_bitfield field; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint64_t value; #else uint32_t value; #endif } r; -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#if defined(__aarch64__) || defined(_M_ARM64) + r.value = _sse2neon_get_fpcr(); #else __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; -#if defined(__aarch64__) - __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#if defined(__aarch64__) || defined(_M_ARM64) + _sse2neon_set_fpcr(r.value); #else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } -// Sets the four single-precision, floating-point values to the four inputs. -// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +// Set packed single-precision (32-bit) floating-point elements in dst with the +// supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) { float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; return vreinterpretq_m128_f32(vld1q_f32(data)); } -// Sets the four single-precision, floating-point values to w. -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +// Broadcast single-precision (32-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1 FORCE_INLINE __m128 _mm_set_ps1(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); @@ -2442,91 +2465,75 @@ FORCE_INLINE __m128 _mm_set_ps1(float _w) // the value in unsigned 32-bit integer a. The rounding mode may contain any of // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, // _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) { - union { - fpcr_bitfield field; -#if defined(__aarch64__) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ -#else - __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - switch (rounding) { - case _MM_ROUND_TOWARD_ZERO: - r.field.bit22 = 1; - r.field.bit23 = 1; + case _MM_ROUND_NEAREST: + rounding = FE_TONEAREST; break; case _MM_ROUND_DOWN: - r.field.bit22 = 0; - r.field.bit23 = 1; + rounding = FE_DOWNWARD; break; case _MM_ROUND_UP: - r.field.bit22 = 1; - r.field.bit23 = 0; + rounding = FE_UPWARD; break; - default: //_MM_ROUND_NEAREST - r.field.bit22 = 0; - r.field.bit23 = 0; + case _MM_ROUND_TOWARD_ZERO: + rounding = FE_TOWARDZERO; + break; + default: + // rounding must be _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, + // _MM_ROUND_TOWARD_ZERO. all the other invalid values we treat them as + // FE_TOWARDZERO (truncate). + rounding = FE_TOWARDZERO; } - -#if defined(__aarch64__) - __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ -#else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ -#endif + fesetround(rounding); } // Copy single-precision (32-bit) floating-point element a to the lower element // of dst, and zero the upper 3 elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss FORCE_INLINE __m128 _mm_set_ss(float a) { - float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; - return vreinterpretq_m128_f32(vld1q_f32(data)); + return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); } -// Sets the four single-precision, floating-point values to w. -// -// r0 := r1 := r2 := r3 := w -// -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +// Broadcast single-precision (32-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps FORCE_INLINE __m128 _mm_set1_ps(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } +// Set the MXCSR control and status register with the value in unsigned 32-bit +// integer a. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr // FIXME: _mm_setcsr() implementation supports changing the rounding mode only. FORCE_INLINE void _mm_setcsr(unsigned int a) { _MM_SET_ROUNDING_MODE(a); } +// Get the unsigned 32-bit value of the MXCSR control and status register. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr // FIXME: _mm_getcsr() implementation supports reading the rounding mode only. -FORCE_INLINE unsigned int _mm_getcsr() +FORCE_INLINE unsigned int _mm_getcsr(void) { return _MM_GET_ROUNDING_MODE(); } -// Sets the four single-precision, floating-point values to the four inputs in -// reverse order. -// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +// Set packed single-precision (32-bit) floating-point elements in dst with the +// supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) { float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; return vreinterpretq_m128_f32(vld1q_f32(data)); } -// Clears the four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +// Return vector of type __m128 with all elements set to zero. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps FORCE_INLINE __m128 _mm_setzero_ps(void) { return vreinterpretq_m128_f32(vdupq_n_f32(0)); @@ -2534,130 +2541,145 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16 -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_pi16(a, imm) \ - __extension__({ \ - vreinterpret_m64_s16(__builtin_shufflevector( \ - vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ - ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \ - }) -#else -#define _mm_shuffle_pi16(a, imm) \ - __extension__({ \ - int16x4_t ret; \ - ret = \ - vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \ - 1); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \ - 2); \ - ret = vset_lane_s16( \ - vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \ - 3); \ - vreinterpret_m64_s16(ret); \ - }) -#endif - -// Guarantees that every preceding store is globally visible before any -// subsequent store. -// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pi16(a, imm) \ + vreinterpret_m64_s16(vshuffle_s16( \ + vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ + ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))) +#else +#define _mm_shuffle_pi16(a, imm) \ + _sse2neon_define1( \ + __m64, a, int16x4_t ret; \ + ret = vmov_n_s16( \ + vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3))); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \ + 1); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \ + 2); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \ + 3); \ + _sse2neon_return(vreinterpret_m64_s16(ret));) +#endif + +// Perform a serializing operation on all store-to-memory instructions that were +// issued prior to this instruction. Guarantees that every store instruction +// that precedes, in program order, is globally visible before any store +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence FORCE_INLINE void _mm_sfence(void) { - __sync_synchronize(); + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory and store-to-memory +// instructions that were issued prior to this instruction. Guarantees that +// every memory access that precedes, in program order, the memory fence +// instruction is globally visible before any memory instruction which follows +// the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence +FORCE_INLINE void _mm_mfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory instructions that +// were issued prior to this instruction. Guarantees that every load instruction +// that precedes, in program order, is globally visible before any load +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence +FORCE_INLINE void _mm_lfence(void) +{ + _sse2neon_smp_mb(); } // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) // int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - float32x4_t _input1 = vreinterpretq_f32_m128(a); \ - float32x4_t _input2 = vreinterpretq_f32_m128(b); \ - float32x4_t _shuf = __builtin_shufflevector( \ - _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128_f32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + float32x4_t _input1 = vreinterpretq_f32_m128(a); \ + float32x4_t _input2 = vreinterpretq_f32_m128(b); \ + float32x4_t _shuf = \ + vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128_f32(_shuf); \ }) #else // generic -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - __m128 ret; \ - switch (imm) { \ - case _MM_SHUFFLE(1, 0, 3, 2): \ - ret = _mm_shuffle_ps_1032((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 3, 0, 1): \ - ret = _mm_shuffle_ps_2301((a), (b)); \ - break; \ - case _MM_SHUFFLE(0, 3, 2, 1): \ - ret = _mm_shuffle_ps_0321((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 1, 0, 3): \ - ret = _mm_shuffle_ps_2103((a), (b)); \ - break; \ - case _MM_SHUFFLE(1, 0, 1, 0): \ - ret = _mm_movelh_ps((a), (b)); \ - break; \ - case _MM_SHUFFLE(1, 0, 0, 1): \ - ret = _mm_shuffle_ps_1001((a), (b)); \ - break; \ - case _MM_SHUFFLE(0, 1, 0, 1): \ - ret = _mm_shuffle_ps_0101((a), (b)); \ - break; \ - case _MM_SHUFFLE(3, 2, 1, 0): \ - ret = _mm_shuffle_ps_3210((a), (b)); \ - break; \ - case _MM_SHUFFLE(0, 0, 1, 1): \ - ret = _mm_shuffle_ps_0011((a), (b)); \ - break; \ - case _MM_SHUFFLE(0, 0, 2, 2): \ - ret = _mm_shuffle_ps_0022((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 2, 0, 0): \ - ret = _mm_shuffle_ps_2200((a), (b)); \ - break; \ - case _MM_SHUFFLE(3, 2, 0, 2): \ - ret = _mm_shuffle_ps_3202((a), (b)); \ - break; \ - case _MM_SHUFFLE(3, 2, 3, 2): \ - ret = _mm_movehl_ps((b), (a)); \ - break; \ - case _MM_SHUFFLE(1, 1, 3, 3): \ - ret = _mm_shuffle_ps_1133((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 0, 1, 0): \ - ret = _mm_shuffle_ps_2010((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 0, 0, 1): \ - ret = _mm_shuffle_ps_2001((a), (b)); \ - break; \ - case _MM_SHUFFLE(2, 0, 3, 2): \ - ret = _mm_shuffle_ps_2032((a), (b)); \ - break; \ - default: \ - ret = _mm_shuffle_ps_default((a), (b), (imm)); \ - break; \ - } \ - ret; \ - }) -#endif - -// Computes the approximations of square roots of the four single-precision, -// floating-point values of a. First computes reciprocal square roots and then -// reciprocals of the four values. -// -// r0 := sqrt(a0) -// r1 := sqrt(a1) -// r2 := sqrt(a2) -// r3 := sqrt(a3) -// -// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +#define _mm_shuffle_ps(a, b, imm) \ + _sse2neon_define2( \ + __m128, a, b, __m128 ret; switch (imm) { \ + case _MM_SHUFFLE(1, 0, 3, 2): \ + ret = _mm_shuffle_ps_1032(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 3, 0, 1): \ + ret = _mm_shuffle_ps_2301(_a, _b); \ + break; \ + case _MM_SHUFFLE(0, 3, 2, 1): \ + ret = _mm_shuffle_ps_0321(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 1, 0, 3): \ + ret = _mm_shuffle_ps_2103(_a, _b); \ + break; \ + case _MM_SHUFFLE(1, 0, 1, 0): \ + ret = _mm_movelh_ps(_a, _b); \ + break; \ + case _MM_SHUFFLE(1, 0, 0, 1): \ + ret = _mm_shuffle_ps_1001(_a, _b); \ + break; \ + case _MM_SHUFFLE(0, 1, 0, 1): \ + ret = _mm_shuffle_ps_0101(_a, _b); \ + break; \ + case _MM_SHUFFLE(3, 2, 1, 0): \ + ret = _mm_shuffle_ps_3210(_a, _b); \ + break; \ + case _MM_SHUFFLE(0, 0, 1, 1): \ + ret = _mm_shuffle_ps_0011(_a, _b); \ + break; \ + case _MM_SHUFFLE(0, 0, 2, 2): \ + ret = _mm_shuffle_ps_0022(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 2, 0, 0): \ + ret = _mm_shuffle_ps_2200(_a, _b); \ + break; \ + case _MM_SHUFFLE(3, 2, 0, 2): \ + ret = _mm_shuffle_ps_3202(_a, _b); \ + break; \ + case _MM_SHUFFLE(3, 2, 3, 2): \ + ret = _mm_movehl_ps(_b, _a); \ + break; \ + case _MM_SHUFFLE(1, 1, 3, 3): \ + ret = _mm_shuffle_ps_1133(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 0, 1, 0): \ + ret = _mm_shuffle_ps_2010(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 0, 0, 1): \ + ret = _mm_shuffle_ps_2001(_a, _b); \ + break; \ + case _MM_SHUFFLE(2, 0, 3, 2): \ + ret = _mm_shuffle_ps_2032(_a, _b); \ + break; \ + default: \ + ret = _mm_shuffle_ps_default(_a, _b, (imm)); \ + break; \ + } _sse2neon_return(ret);) +#endif + +// Compute the square root of packed single-precision (32-bit) floating-point +// elements in a, and store the results in dst. +// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement +// square root by multiplying input in with its reciprocal square root before +// using the Newton-Raphson method to approximate the results. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) { -#if SSE2NEON_PRECISE_SQRT +#if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_SQRT + return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); +#else float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); // Test for vrsqrteq_f32(0) -> positive infinity case. @@ -2668,28 +2690,23 @@ FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) recip = vreinterpretq_f32_u32( vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); - // Additional Netwon-Raphson iteration for accuracy recip = vmulq_f32( vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), recip); + // Additional Netwon-Raphson iteration for accuracy recip = vmulq_f32( vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), recip); // sqrt(s) = s * 1/sqrt(s) return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); -#elif defined(__aarch64__) - return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); -#else - float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); - float32x4_t sq = vrecpeq_f32(recipsq); - return vreinterpretq_m128_f32(sq); #endif } -// Computes the approximation of the square root of the scalar single-precision -// floating point value of in. -// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +// Compute the square root of the lower single-precision (32-bit) floating-point +// element in a, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) { float32_t value = @@ -2698,8 +2715,10 @@ FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); } -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary +// or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps FORCE_INLINE void _mm_store_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); @@ -2708,21 +2727,16 @@ FORCE_INLINE void _mm_store_ps(float *p, __m128 a) // Store the lower single-precision (32-bit) floating-point element from a into // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) { float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); vst1q_f32(p, vdupq_n_f32(a0)); } -// Stores the lower single - precision, floating - point value. -// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +// Store the lower single-precision (32-bit) floating-point element from a into +// memory. mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss FORCE_INLINE void _mm_store_ss(float *p, __m128 a) { vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); @@ -2731,34 +2745,20 @@ FORCE_INLINE void _mm_store_ss(float *p, __m128 a) // Store the lower single-precision (32-bit) floating-point element from a into // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps #define _mm_store1_ps _mm_store_ps1 -// Stores the upper two single-precision, floating-point values of a to the -// address p. -// -// *p0 := a2 -// *p1 := a3 -// -// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx +// Store the upper 2 single-precision (32-bit) floating-point elements from a +// into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) { *p = vreinterpret_m64_f32(vget_high_f32(a)); } -// Stores the lower two single-precision floating point values of a to the -// address p. -// -// *p0 := a0 -// *p1 := a1 -// -// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx +// Store the lower 2 single-precision (32-bit) floating-point elements from a +// into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) { *p = vreinterpret_m64_f32(vget_low_f32(a)); @@ -2767,13 +2767,7 @@ FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) // Store 4 single-precision (32-bit) floating-point elements from a into memory // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[127:96] -// MEM[mem_addr+63:mem_addr+32] := a[95:64] -// MEM[mem_addr+95:mem_addr+64] := a[63:32] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) { float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); @@ -2781,22 +2775,24 @@ FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) vst1q_f32(p, rev); } -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from a into memory. mem_addr does not need to be aligned on any +// particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); } // Stores 16-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) { vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); } // Stores 64-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) { vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); @@ -2804,7 +2800,7 @@ FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) // Store 64-bits of integer data from a into memory using a non-temporal memory // hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) { vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); @@ -2812,7 +2808,7 @@ FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) // Store 128-bits (composed of 4 packed single-precision (32-bit) floating- // point elements) from a into memory using a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) { #if __has_builtin(__builtin_nontemporal_store) @@ -2822,14 +2818,10 @@ FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) #endif } -// Subtracts the four single-precision, floating-point values of a and b. -// -// r0 := a0 - b0 -// r1 := a1 - b1 -// r2 := a2 - b2 -// r3 := a3 - b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +// Subtract packed single-precision (32-bit) floating-point elements in b from +// packed single-precision (32-bit) floating-point elements in a, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2840,11 +2832,7 @@ FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) // the lower single-precision (32-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper 3 packed elements from // a to the upper elements of dst. -// -// dst[31:0] := a[31:0] - b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_sub_ps(a, b)); @@ -2853,7 +2841,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the // transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ @@ -2878,7 +2866,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) #define _mm_ucomineq_ss _mm_comineq_ss // Return vector of type __m128i with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 FORCE_INLINE __m128i _mm_undefined_si128(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2886,6 +2874,9 @@ FORCE_INLINE __m128i _mm_undefined_si128(void) #pragma GCC diagnostic ignored "-Wuninitialized" #endif __m128i a; +#if defined(_MSC_VER) + a = _mm_setzero_si128(); +#endif return a; #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop @@ -2893,7 +2884,7 @@ FORCE_INLINE __m128i _mm_undefined_si128(void) } // Return vector of type __m128 with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps FORCE_INLINE __m128 _mm_undefined_ps(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2901,24 +2892,21 @@ FORCE_INLINE __m128 _mm_undefined_ps(void) #pragma GCC diagnostic ignored "-Wuninitialized" #endif __m128 a; +#if defined(_MSC_VER) + a = _mm_setzero_ps(); +#endif return a; #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif } -// Selects and interleaves the upper two single-precision, floating-point values -// from a and b. -// -// r0 := a2 -// r1 := b2 -// r2 := a3 -// r3 := b3 -// -// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +// Unpack and interleave single-precision (32-bit) floating-point elements from +// the high half a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32( vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); #else @@ -2929,18 +2917,12 @@ FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) #endif } -// Selects and interleaves the lower two single-precision, floating-point values -// from a and b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +// Unpack and interleave single-precision (32-bit) floating-point elements from +// the low half of a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32( vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); #else @@ -2951,9 +2933,9 @@ FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) #endif } -// Computes bitwise EXOR (exclusive-or) of the four single-precision, -// floating-point values of a and b. -// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +// Compute the bitwise XOR of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -2962,42 +2944,32 @@ FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) /* SSE2 */ -// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or -// unsigned 16-bit integers in b. -// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +// Add packed 16-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16 FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +// Add packed 32-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32 FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +// Add packed 64-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64 FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) { return vreinterpretq_m128i_s64( vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); } -// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or -// unsigned 8-bit integers in b. -// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) +// Add packed 8-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8 FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3006,18 +2978,24 @@ FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) // Add packed double-precision (64-bit) floating-point elements in a and b, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - double *da = (double *) &a; - double *db = (double *) &b; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1] + db[1]; + c[0] = a0 + b0; + c[1] = a1 + b1; return vld1q_f32((float32_t *) c); #endif } @@ -3025,45 +3003,34 @@ FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) // Add the lower double-precision (64-bit) floating-point element in a and b, // store the result in the lower element of dst, and copy the upper element from // a to the upper element of dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_add_pd(a, b)); #else - double *da = (double *) &a; - double *db = (double *) &b; + double a0, a1, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1]; + c[0] = a0 + b0; + c[1] = a1; return vld1q_f32((float32_t *) c); #endif } // Add 64-bit integers a and b, and store the result in dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); } -// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b -// and saturates. -// -// r0 := SignedSaturate(a0 + b0) -// r1 := SignedSaturate(a1 + b1) -// ... -// r7 := SignedSaturate(a7 + b7) -// -// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx +// Add packed signed 16-bit integers in a and b using saturation, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16 FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -3072,13 +3039,7 @@ FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) // Add packed signed 8-bit integers in a and b using saturation, and store the // results in dst. -// -// FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3087,16 +3048,16 @@ FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) // Add packed unsigned 16-bit integers in a and b using saturation, and store // the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in -// b and saturates.. -// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx +// Add packed unsigned 8-bit integers in a and b using saturation, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8 FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3105,25 +3066,16 @@ FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) // Compute the bitwise AND of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] AND b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in -// b. -// -// r := a & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128 FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -3132,13 +3084,7 @@ FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) // Compute the bitwise NOT of packed double-precision (64-bit) floating-point // elements in a and then AND with b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) { // *NOTE* argument swap @@ -3146,12 +3092,9 @@ FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); } -// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the -// 128-bit value in a. -// -// r := (~a) & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +// Compute the bitwise NOT of 128 bits (representing integer data) in a and then +// AND with b, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128 FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -3159,30 +3102,18 @@ FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) vreinterpretq_s32_m128i(a))); // *NOTE* argument swap } -// Computes the average of the 8 unsigned 16-bit integers in a and the 8 -// unsigned 16-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r7 := (a7 + b7) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16 FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) { return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); } -// Computes the average of the 16 unsigned 8-bit integers in a and the 16 -// unsigned 8-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r15 := (a15 + b15) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8 FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3191,17 +3122,17 @@ FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) // Shift a left by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) // Cast vector of type __m128d to type __m128. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) { return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); @@ -3209,7 +3140,7 @@ FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) // Cast vector of type __m128d to type __m128i. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) { return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); @@ -3217,15 +3148,15 @@ FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) // Cast vector of type __m128 to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd FORCE_INLINE __m128d _mm_castps_pd(__m128 a) { return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); } -// Applies a type cast to reinterpret four 32-bit floating point values passed -// in as a 128-bit parameter as packed 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb514099.aspx +// Cast vector of type __m128 to type __m128i. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128 FORCE_INLINE __m128i _mm_castps_si128(__m128 a) { return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); @@ -3233,36 +3164,52 @@ FORCE_INLINE __m128i _mm_castps_si128(__m128 a) // Cast vector of type __m128i to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); #else return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); #endif } -// Applies a type cast to reinterpret four 32-bit integers passed in as a -// 128-bit parameter as packed 32-bit floating point values. -// https://msdn.microsoft.com/en-us/library/bb514029.aspx +// Cast vector of type __m128i to type __m128. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) { return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); } -// Cache line containing p is flushed and invalidated from all caches in the -// coherency domain. : -// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +// Invalidate and flush the cache line that contains p from all levels of the +// cache hierarchy. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush +#if defined(__APPLE__) +#include +#endif FORCE_INLINE void _mm_clflush(void const *p) { (void) p; - // no corollary for Neon? + + /* sys_icache_invalidate is supported since macOS 10.5. + * However, it does not work on non-jailbroken iOS devices, although the + * compilation is successful. + */ +#if defined(__APPLE__) + sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); +#elif defined(__GNUC__) || defined(__clang__) + uintptr_t ptr = (uintptr_t) p; + __builtin___clear_cache((char *) ptr, + (char *) ptr + SSE2NEON_CACHELINE_SIZE); +#elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H + FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE); +#endif } -// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or -// unsigned 16-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx +// Compare packed 16-bit integers in a and b for equality, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16 FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -3270,16 +3217,17 @@ FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) } // Compare packed 32-bit integers in a and b for equality, and store the results -// in dst +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32 FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or -// unsigned 8-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx +// Compare packed 8-bit integers in a and b for equality, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8 FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3288,10 +3236,10 @@ FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for equality, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64( vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else @@ -3306,7 +3254,7 @@ FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for equality, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); @@ -3314,20 +3262,24 @@ FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64( vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 >= b0 ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1 >= b1 ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3336,57 +3288,46 @@ FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmpge_pd(a, b)); #else // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 >= b0 ? ~UINT64_C(0) : UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif } -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xffff : 0x0 -// r1 := (a1 > b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 > b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16 FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for greater than. -// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32 FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xff : 0x0 -// r1 := (a1 > b1) ? 0xff : 0x0 -// ... -// r15 := (a15 > b15) ? 0xff : 0x0 -// -// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx +// Compare packed signed 8-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8 FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3395,20 +3336,24 @@ FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64( vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 > b0 ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1 > b1 ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3417,18 +3362,19 @@ FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); #else // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 > b0 ? ~UINT64_C(0) : UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); @@ -3437,20 +3383,24 @@ FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64( vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 <= b0 ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1 <= b1 ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3459,52 +3409,49 @@ FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than-or-equal, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmple_pd(a, b)); #else // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 <= b0 ? ~UINT64_C(0) : UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif } -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for less than. -// -// r0 := (a0 < b0) ? 0xffff : 0x0 -// r1 := (a1 < b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 < b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16 FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } - -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for less than. -// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32 FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for lesser than. -// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx +// Compare packed signed 8-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8 FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3513,20 +3460,24 @@ FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64( vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 < b0 ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1 < b1 ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3535,17 +3486,18 @@ FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmplt_pd(a, b)); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = a0 < b0 ? ~UINT64_C(0) : UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); @@ -3554,10 +3506,10 @@ FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); #else @@ -3572,7 +3524,7 @@ FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-equal, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); @@ -3580,23 +3532,25 @@ FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64(veorq_u64( vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), vdupq_n_u64(UINT64_MAX))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = - !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = !(a0 >= b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = !(a1 >= b1) ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3605,7 +3559,7 @@ FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than-or-equal, store the result in the lower element of // dst, and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); @@ -3613,23 +3567,25 @@ FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64(veorq_u64( vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), vdupq_n_u64(UINT64_MAX))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = - !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = !(a0 > b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = !(a1 > b1) ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3638,7 +3594,7 @@ FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); @@ -3646,23 +3602,25 @@ FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64(veorq_u64( vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), vdupq_n_u64(UINT64_MAX))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = - !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = !(a0 <= b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = !(a1 <= b1) ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3671,7 +3629,7 @@ FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); @@ -3679,23 +3637,25 @@ FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_u64(veorq_u64( vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), vdupq_n_u64(UINT64_MAX))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = - !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = - !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + d[0] = !(a0 < b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = !(a1 < b1) ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3704,7 +3664,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); @@ -3712,10 +3672,10 @@ FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if neither is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) // Excluding NaNs, any two floating point numbers can be compared. uint64x2_t not_nan_a = vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); @@ -3723,19 +3683,17 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b)); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? ~UINT64_C(0) - : UINT64_C(0); - d[1] = ((*(double *) &a1) == (*(double *) &a1) && - (*(double *) &b1) == (*(double *) &b1)) - ? ~UINT64_C(0) - : UINT64_C(0); + d[0] = (a0 == a0 && b0 == b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (a1 == a1 && b1 == b1) ? ~UINT64_C(0) : UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3744,20 +3702,18 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if neither is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmpord_pd(a, b)); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? ~UINT64_C(0) - : UINT64_C(0); + d[0] = (a0 == a0 && b0 == b0) ? ~UINT64_C(0) : UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); @@ -3766,10 +3722,10 @@ FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if either is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) // Two NaNs are not equal in comparison operation. uint64x2_t not_nan_a = vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); @@ -3778,19 +3734,17 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) return vreinterpretq_m128d_s32( vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b)))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? UINT64_C(0) - : ~UINT64_C(0); - d[1] = ((*(double *) &a1) == (*(double *) &a1) && - (*(double *) &b1) == (*(double *) &b1)) - ? UINT64_C(0) - : ~UINT64_C(0); + d[0] = (a0 == a0 && b0 == b0) ? UINT64_C(0) : ~UINT64_C(0); + d[1] = (a1 == a1 && b1 == b1) ? UINT64_C(0) : ~UINT64_C(0); return vreinterpretq_m128d_u64(vld1q_u64(d)); #endif @@ -3799,20 +3753,18 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if either is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_cmpunord_pd(a, b)); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); uint64_t d[2]; - d[0] = ((*(double *) &a0) == (*(double *) &a0) && - (*(double *) &b0) == (*(double *) &b0)) - ? UINT64_C(0) - : ~UINT64_C(0); + d[0] = (a0 == a0 && b0 == b0) ? UINT64_C(0) : ~UINT64_C(0); d[1] = a1; return vreinterpretq_m128d_u64(vld1q_u64(d)); @@ -3821,70 +3773,73 @@ FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1; #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - - return (*(double *) &a0 >= *(double *) &b0); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + return a0 >= b0; #endif } // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1; #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); - return (*(double *) &a0 > *(double *) &b0); + return a0 > b0; #endif } // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1; #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); - return (*(double *) &a0 <= *(double *) &b0); + return a0 <= b0; #endif } // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1; #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + double a0, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); - return (*(double *) &a0 < *(double *) &b0); + return a0 < b0; #endif } // Compare the lower double-precision (64-bit) floating-point element in a and b // for equality, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1; #else uint32x4_t a_not_nan = @@ -3902,7 +3857,7 @@ FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for not-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) { return !_mm_comieq_sd(a, b); @@ -3910,17 +3865,10 @@ FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) // Convert packed signed 32-bit integers in a to packed double-precision // (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); #else @@ -3930,9 +3878,9 @@ FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) #endif } -// Converts the four signed 32-bit integer values of a to single-precision, -// floating-point values -// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +// Convert packed signed 32-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) { return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); @@ -3940,37 +3888,37 @@ FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) { +// vrnd32xq_f64 not supported on clang +#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) + float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); + int64x2_t integers = vcvtq_s64_f64(rounded); + return vreinterpretq_m128i_s32( + vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); +#else __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double d0 = ((double *) &rnd)[0]; - double d1 = ((double *) &rnd)[1]; + double d0, d1; + d0 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0)); + d1 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 1)); return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); +#endif } // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) { __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double d0 = ((double *) &rnd)[0]; - double d1 = ((double *) &rnd)[1]; + double d0, d1; + d0 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0)); + d1 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 1)); int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1}; return vreinterpret_m64_s32(vld1_s32(data)); } @@ -3978,40 +3926,26 @@ FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed single-precision (32-bit) floating-point elements, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k]) -// ENDFOR -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); #else - float a0 = (float) ((double *) &a)[0]; - float a1 = (float) ((double *) &a)[1]; - return _mm_set_ps(0, 0, a1, a0); + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + return _mm_set_ps(0, 0, (float) a1, (float) a0); #endif } // Convert packed signed 32-bit integers in a to packed double-precision // (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); #else @@ -4021,20 +3955,17 @@ FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) #endif } -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values. -// -// r0 := (int) a0 -// r1 := (int) a1 -// r2 := (int) a2 -// r3 := (int) a3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32 // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A // does not support! It is supported on ARMv8-A however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if defined(__ARM_FEATURE_FRINT) + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); +#elif (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (_MM_GET_ROUNDING_MODE()) { case _MM_ROUND_NEAREST: return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); @@ -4084,17 +4015,10 @@ FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed double-precision (64-bit) floating-point elements, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// k := 32*j -// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); #else @@ -4105,134 +4029,113 @@ FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) } // Copy the lower double-precision (64-bit) floating-point element of a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 FORCE_INLINE double _mm_cvtsd_f64(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); #else - return ((double *) &a)[0]; + double _a = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + return _a; #endif } // Convert the lower double-precision (64-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// -// dst[31:0] := Convert_FP64_To_Int32(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); #else __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double ret = ((double *) &rnd)[0]; + double ret = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0)); return (int32_t) ret; #endif } // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); #else __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); - double ret = ((double *) &rnd)[0]; + double ret = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0)); return (int64_t) ret; #endif } // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x #define _mm_cvtsd_si64x _mm_cvtsd_si64 // Convert the lower double-precision (64-bit) floating-point element in b to a // single-precision (32-bit) floating-point element, store the result in the // lower element of dst, and copy the upper 3 packed elements from a to the // upper elements of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32(vsetq_lane_f32( vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0), vreinterpretq_f32_m128(a), 0)); #else - return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0], - vreinterpretq_f32_m128(a), 0)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + return vreinterpretq_m128_f32( + vsetq_lane_f32((float) b0, vreinterpretq_f32_m128(a), 0)); #endif } // Copy the lower 32-bit integer in a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Convert the signed 32-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); #else - double bf = (double) b; + int64_t _b = sse2neon_recast_f64_s64((double) b); return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); + vsetq_lane_s64(_b, vreinterpretq_s64_m128d(a), 0)); #endif } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) -// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 -// r2 := 0x0 -// r3 := 0x0 -// -// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +// Copy 32-bit integer a to the lower elements of dst, and zero the upper +// elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128 FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) { return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); @@ -4241,24 +4144,22 @@ FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); #else - double bf = (double) b; + int64_t _b = sse2neon_recast_f64_s64((double) b); return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); + vsetq_lane_s64(_b, vreinterpretq_s64_m128d(a), 0)); #endif } -// Moves 64-bit integer a to the least significant 64 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 +// Copy 64-bit integer a to the lower element of dst, and zero the upper +// element. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128 FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) { return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); @@ -4266,60 +4167,58 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // Copy 64-bit integer a to the lower element of dst, and zero the upper // element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) // Convert the lower single-precision (32-bit) floating-point element in b to a // double-precision (64-bit) floating-point element, store the result in the // lower element of dst, and copy the upper element from a to the upper element // of dst. -// -// dst[63:0] := Convert_FP32_To_FP64(b[31:0]) -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) { double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); #else - return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); + return vreinterpretq_m128d_s64(vsetq_lane_s64( + sse2neon_recast_f64_s64(d), vreinterpretq_s64_m128d(a), 0)); #endif } // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) { - double a0 = ((double *) &a)[0]; - double a1 = ((double *) &a)[1]; + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0); } // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) { - double a0 = ((double *) &a)[0]; - double a1 = ((double *) &a)[1]; + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1}; return vreinterpret_m64_s32(vld1_s32(data)); } -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values using truncate. -// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32 FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) { return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); @@ -4327,60 +4226,53 @@ FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) { - double ret = *((double *) &a); - return (int32_t) ret; + double _a = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + return (int32_t) _a; } // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); #else - double ret = *((double *) &a); - return (int64_t) ret; + double _a = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + return (int64_t) _a; #endif } // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) // Divide packed double-precision (64-bit) floating-point elements in a by // packed elements in b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// dst[i+63:i] := a[i+63:i] / b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - double *da = (double *) &a; - double *db = (double *) &b; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); double c[2]; - c[0] = da[0] / db[0]; - c[1] = da[1] / db[1]; + c[0] = a0 / b0; + c[1] = a1 / b1; return vld1q_f32((float32_t *) c); #endif } @@ -4389,10 +4281,10 @@ FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) // lower double-precision (64-bit) floating-point element in b, store the result // in the lower element of dst, and copy the upper element from a to the upper // element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) float64x2_t tmp = vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); return vreinterpretq_m128d_f64( @@ -4402,33 +4294,29 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) #endif } -// Extracts the selected signed or unsigned 16-bit integer from a and zero -// extends. -// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16 // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) #define _mm_extract_epi16(a, imm) \ vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) -// Inserts the least significant 16 bits of b into the selected 16-bit integer -// of a. -// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16 // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, // __constrange(0,8) int imm) -#define _mm_insert_epi16(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s16( \ - vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ - }) +#define _mm_insert_epi16(a, b, imm) \ + vreinterpretq_m128i_s16( \ + vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))) -// Loads two double-precision from 16-byte aligned memory, floating-point -// values. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd +// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from memory into dst. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd FORCE_INLINE __m128d _mm_load_pd(const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vld1q_f64(p)); #else const float *fp = (const float *) p; @@ -4439,24 +4327,16 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 #define _mm_load_pd1 _mm_load1_pd // Load a double-precision (64-bit) floating-point element from memory into the // lower of dst, and zero the upper element. mem_addr does not need to be // aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd FORCE_INLINE __m128d _mm_load_sd(const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); #else const float *fp = (const float *) p; @@ -4465,8 +4345,9 @@ FORCE_INLINE __m128d _mm_load_sd(const double *p) #endif } -// Loads 128-bit value. : -// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +// Load 128-bits of integer data from memory into dst. mem_addr must be aligned +// on a 16-byte boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128 FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) { return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); @@ -4474,14 +4355,10 @@ FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd FORCE_INLINE __m128d _mm_load1_pd(const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); #else return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); @@ -4491,14 +4368,10 @@ FORCE_INLINE __m128d _mm_load1_pd(const double *p) // Load a double-precision (64-bit) floating-point element from memory into the // upper element of dst, and copy the lower element from a to dst. mem_addr does // not need to be aligned on any particular boundary. -// -// dst[63:0] := a[63:0] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); #else @@ -4508,7 +4381,7 @@ FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) } // Load 64-bit integer from memory into the first element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) { /* Load the lower 64 bits of the value pointed to by p into the @@ -4521,14 +4394,10 @@ FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) // Load a double-precision (64-bit) floating-point element from memory into the // lower element of dst, and copy the upper element from a to dst. mem_addr does // not need to be aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); #else @@ -4541,14 +4410,10 @@ FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) // Load 2 double-precision (64-bit) floating-point elements from memory into dst // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[63:0] := MEM[mem_addr+127:mem_addr+64] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd FORCE_INLINE __m128d _mm_loadr_pd(const double *p) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) float64x2_t v = vld1q_f64(p); return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); #else @@ -4558,43 +4423,42 @@ FORCE_INLINE __m128d _mm_loadr_pd(const double *p) } // Loads two double-precision from unaligned memory, floating-point values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd FORCE_INLINE __m128d _mm_loadu_pd(const double *p) { return _mm_load_pd(p); } -// Loads 128-bit value. : -// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx +// Load 128-bits of integer data from memory into dst. mem_addr does not need to +// be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128 FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) { - return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); + return vreinterpretq_m128i_s32(vld1q_s32((const unaligned_int32_t *) p)); } // Load unaligned 32-bit integer from memory into the first element of dst. -// -// dst[31:0] := MEM[mem_addr+31:mem_addr] -// dst[MAX:32] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 FORCE_INLINE __m128i _mm_loadu_si32(const void *p) { return vreinterpretq_m128i_s32( - vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); + vsetq_lane_s32(*(const unaligned_int32_t *) p, vdupq_n_s32(0), 0)); } -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0) + (a1 * b1) -// r1 := (a2 * b2) + (a3 * b3) -// r2 := (a4 * b4) + (a5 * b5) -// r3 := (a6 * b6) + (a7 * b7) -// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Horizontally add adjacent pairs of intermediate +// 32-bit integers, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16 FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) { int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), vget_low_s16(vreinterpretq_s16_m128i(b))); +#if defined(__aarch64__) || defined(_M_ARM64) + int32x4_t high = + vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); + + return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); +#else int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), vget_high_s16(vreinterpretq_s16_m128i(b))); @@ -4602,13 +4466,14 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +#endif } // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. mem_addr does not need to be aligned // on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) { int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); @@ -4619,18 +4484,18 @@ FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) vst1q_s8((int8_t *) mem_addr, masked); } -// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16 FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8 FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -4639,10 +4504,10 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed maximum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) #if SSE2NEON_PRECISE_MINMAX float64x2_t _a = vreinterpretq_f64_m128d(a); float64x2_t _b = vreinterpretq_f64_m128d(b); @@ -4652,46 +4517,52 @@ FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #endif #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); + int64_t d[2]; + d[0] = a0 > b0 ? sse2neon_recast_f64_s64(a0) : sse2neon_recast_f64_s64(b0); + d[1] = a1 > b1 ? sse2neon_recast_f64_s64(a1) : sse2neon_recast_f64_s64(b1); - return vreinterpretq_m128d_u64(vld1q_u64(d)); + return vreinterpretq_m128d_s64(vld1q_s64(d)); #endif } // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the maximum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_max_pd(a, b)); #else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; + double a0, a1, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double c[2] = {a0 > b0 ? a0 : b0, a1}; return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } -// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16 FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8 FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -4700,10 +4571,10 @@ FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed minimum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) #if SSE2NEON_PRECISE_MINMAX float64x2_t _a = vreinterpretq_f64_m128d(a); float64x2_t _b = vreinterpretq_f64_m128d(b); @@ -4713,40 +4584,42 @@ FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #endif #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; - return vreinterpretq_m128d_u64(vld1q_u64(d)); + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); + int64_t d[2]; + d[0] = a0 < b0 ? sse2neon_recast_f64_s64(a0) : sse2neon_recast_f64_s64(b0); + d[1] = a1 < b1 ? sse2neon_recast_f64_s64(a1) : sse2neon_recast_f64_s64(b1); + return vreinterpretq_m128d_s64(vld1q_s64(d)); #endif } // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the minimum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_min_pd(a, b)); #else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; + double a0, a1, b0; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double c[2] = {a0 < b0 ? a0 : b0, a1}; return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } // Copy the lower 64-bit integer in a to the lower element of dst, and zero the // upper element. -// -// dst[63:0] := a[63:0] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 FORCE_INLINE __m128i _mm_move_epi64(__m128i a) { return vreinterpretq_m128i_s64( @@ -4756,11 +4629,7 @@ FORCE_INLINE __m128i _mm_move_epi64(__m128i a) // Move the lower double-precision (64-bit) floating-point element from b to the // lower element of dst, and copy the upper element from a to the upper element // of dst. -// -// dst[63:0] := b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) { return vreinterpretq_m128d_f32( @@ -4768,10 +4637,9 @@ FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) vget_high_f32(vreinterpretq_f32_m128d(a)))); } -// NEON does not provide a version of this function. -// Creates a 16-bit mask from the most significant bits of the 16 signed or -// unsigned 8-bit integers in a and zero extends the upper bits. -// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8 FORCE_INLINE int _mm_movemask_epi8(__m128i a) { // Use increasingly wide shifts+adds to collect the sign bits @@ -4854,19 +4722,17 @@ FORCE_INLINE int _mm_movemask_epi8(__m128i a) // Set each bit of mask dst based on the most significant bit of the // corresponding packed double-precision (64-bit) floating-point element in a. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd FORCE_INLINE int _mm_movemask_pd(__m128d a) { uint64x2_t input = vreinterpretq_u64_m128d(a); uint64x2_t high_bits = vshrq_n_u64(input, 63); - return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1); + return (int) (vgetq_lane_u64(high_bits, 0) | + (vgetq_lane_u64(high_bits, 1) << 1)); } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) { return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); @@ -4874,11 +4740,7 @@ FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) // Copy the 64-bit integer a to the lower element of dst, and zero the upper // element. -// -// dst[63:0] := a[63:0] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) { return vreinterpretq_m128i_s64( @@ -4887,9 +4749,7 @@ FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) // Multiply the low unsigned 32-bit integers from each packed 64-bit element in // a and b, and store the unsigned 64-bit results in dst. -// -// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF) -// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32 FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) { // vmull_u32 upcasts instead of masking, so we downcast. @@ -4900,18 +4760,24 @@ FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) // Multiply packed double-precision (64-bit) floating-point elements in a and b, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - double *da = (double *) &a; - double *db = (double *) &b; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); double c[2]; - c[0] = da[0] * db[0]; - c[1] = da[1] * db[1]; + c[0] = a0 * b0; + c[1] = a1 * b1; return vld1q_f32((float32_t *) c); #endif } @@ -4919,7 +4785,7 @@ FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) // Multiply the lower double-precision (64-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper element // from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_mul_pd(a, b)); @@ -4927,25 +4793,17 @@ FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) // Multiply the low unsigned 32-bit integers from a and b, and store the // unsigned 64-bit result in dst. -// -// dst[63:0] := a[31:0] * b[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) { return vreinterpret_m64_u64(vget_low_u64( vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); } -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0)[31:16] -// r1 := (a1 * b1)[31:16] -// ... -// r7 := (a7 * b7)[31:16] -// -// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +// Multiply the packed signed 16-bit integers in a and b, producing intermediate +// 32-bit integers, and store the high 16 bits of the intermediate integers in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16 FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) { /* FIXME: issue with large values because of result saturation */ @@ -4966,13 +4824,13 @@ FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) { uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); uint32x4_t ab3210 = vmull_u16(a3210, b3210); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint32x4_t ab7654 = vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), @@ -4988,15 +4846,9 @@ FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) #endif } -// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or -// unsigned 16-bit integers from b. -// -// r0 := (a0 * b0)[15:0] -// r1 := (a1 * b1)[15:0] -// ... -// r7 := (a7 * b7)[15:0] -// -// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit +// integers, and store the low 16 bits of the intermediate integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16 FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -5005,27 +4857,25 @@ FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) // Compute the bitwise OR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. -// -// r := a | b -// -// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +// Compute the bitwise OR of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128 FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and -// saturates. -// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +// Convert packed signed 16-bit integers from a and b to packed 8-bit integers +// using signed saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16 FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -5033,19 +4883,9 @@ FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) vqmovn_s16(vreinterpretq_s16_m128i(b)))); } -// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers -// and saturates. -// -// r0 := SignedSaturate(a0) -// r1 := SignedSaturate(a1) -// r2 := SignedSaturate(a2) -// r3 := SignedSaturate(a3) -// r4 := SignedSaturate(b0) -// r5 := SignedSaturate(b1) -// r6 := SignedSaturate(b2) -// r7 := SignedSaturate(b3) -// -// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +// Convert packed signed 32-bit integers from a and b to packed 16-bit integers +// using signed saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32 FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -5053,19 +4893,9 @@ FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) vqmovn_s32(vreinterpretq_s32_m128i(b)))); } -// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// ... -// r7 := UnsignedSaturate(a7) -// r8 := UnsignedSaturate(b0) -// r9 := UnsignedSaturate(b1) -// ... -// r15 := UnsignedSaturate(b7) -// -// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +// Convert packed signed 16-bit integers from a and b to packed 8-bit integers +// using unsigned saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16 FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) { return vreinterpretq_m128i_u8( @@ -5078,24 +4908,29 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) // 'yield' instruction isn't a good fit because it's effectively a nop on most // Arm cores. Experience with several databases has shown has shown an 'isb' is // a reasonable approximation. -FORCE_INLINE void _mm_pause() +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause +FORCE_INLINE void _mm_pause(void) { +#if defined(_MSC_VER) && !defined(__clang__) + __isb(_ARM64_BARRIER_SY); +#else __asm__ __volatile__("isb\n"); +#endif } // Compute the absolute differences of packed unsigned 8-bit integers in a and // b, then horizontally sum each consecutive 8 differences to produce two // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of 64-bit elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) { uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); } -// Sets the 8 signed 16-bit integer values. -// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx +// Set packed 16-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16 FORCE_INLINE __m128i _mm_set_epi16(short i7, short i6, short i5, @@ -5109,33 +4944,31 @@ FORCE_INLINE __m128i _mm_set_epi16(short i7, return vreinterpretq_m128i_s16(vld1q_s16(data)); } -// Sets the 4 signed 32-bit integer values. -// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +// Set packed 32-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32 FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; return vreinterpretq_m128i_s32(vld1q_s32(data)); } -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +// Set packed 64-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64 FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) { - return _mm_set_epi64x((int64_t) i1, (int64_t) i2); + return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0)); } -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +// Set packed 64-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) { return vreinterpretq_m128i_s64( vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); } -// Sets the 16 signed 8-bit integer values. -// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx +// Set packed 8-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8 FORCE_INLINE __m128i _mm_set_epi8(signed char b15, signed char b14, signed char b13, @@ -5153,21 +4986,21 @@ FORCE_INLINE __m128i _mm_set_epi8(signed char b15, signed char b1, signed char b0) { - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + int8_t ALIGN_STRUCT(16) data[16] = { + (int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; return (__m128i) vld1q_s8(data); } // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) { double ALIGN_STRUCT(16) data[2] = {e0, e1}; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); #else return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); @@ -5176,65 +5009,51 @@ FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 #define _mm_set_pd1 _mm_set1_pd // Copy double-precision (64-bit) floating-point element a to the lower element // of dst, and zero the upper element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd FORCE_INLINE __m128d _mm_set_sd(double a) { +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); +#else return _mm_set_pd(0, a); +#endif } -// Sets the 8 signed 16-bit integer values to w. -// -// r0 := w -// r1 := w -// ... -// r7 := w -// -// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx +// Broadcast 16-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16 FORCE_INLINE __m128i _mm_set1_epi16(short w) { return vreinterpretq_m128i_s16(vdupq_n_s16(w)); } -// Sets the 4 signed 32-bit integer values to i. -// -// r0 := i -// r1 := i -// r2 := i -// r3 := I -// -// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +// Broadcast 32-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32 FORCE_INLINE __m128i _mm_set1_epi32(int _i) { return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); } -// Sets the 2 signed 64-bit integer values to i. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100) +// Broadcast 64-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64 FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) { - return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i)); + return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0)); } -// Sets the 2 signed 64-bit integer values to i. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x +// Broadcast 64-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) { return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); } -// Sets the 16 signed 8-bit integer values to b. -// -// r0 := b -// r1 := b -// ... -// r15 := b -// -// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx +// Broadcast 8-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8 FORCE_INLINE __m128i _mm_set1_epi8(signed char w) { return vreinterpretq_m128i_s8(vdupq_n_s8(w)); @@ -5242,23 +5061,19 @@ FORCE_INLINE __m128i _mm_set1_epi8(signed char w) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd FORCE_INLINE __m128d _mm_set1_pd(double d) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vdupq_n_f64(d)); #else - return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); + int64_t _d = sse2neon_recast_f64_s64(d); + return vreinterpretq_m128d_s64(vdupq_n_s64(_d)); #endif } -// Sets the 8 signed 16-bit integer values in reverse order. -// -// Return Value -// r0 := w0 -// r1 := w1 -// ... -// r7 := w7 +// Set packed 16-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16 FORCE_INLINE __m128i _mm_setr_epi16(short w0, short w1, short w2, @@ -5272,8 +5087,8 @@ FORCE_INLINE __m128i _mm_setr_epi16(short w0, return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); } -// Sets the 4 signed 32-bit integer values in reverse order -// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx +// Set packed 32-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32 FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) { int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; @@ -5281,14 +5096,14 @@ FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) } // Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) { return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); } -// Sets the 16 signed 8-bit integer values in reverse order. -// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx +// Set packed 8-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8 FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, signed char b1, signed char b2, @@ -5306,120 +5121,114 @@ FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, signed char b14, signed char b15) { - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + int8_t ALIGN_STRUCT(16) data[16] = { + (int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; return (__m128i) vld1q_s8(data); } // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) { return _mm_set_pd(e0, e1); } // Return vector of type __m128d with all elements set to zero. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd FORCE_INLINE __m128d _mm_setzero_pd(void) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vdupq_n_f64(0)); #else return vreinterpretq_m128d_f32(vdupq_n_f32(0)); #endif } -// Sets the 128-bit value to zero -// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +// Return vector of type __m128i with all elements set to zero. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128 FORCE_INLINE __m128i _mm_setzero_si128(void) { return vreinterpretq_m128i_s32(vdupq_n_s32(0)); } -// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. -// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +// Shuffle 32-bit integers in a using the control in imm8, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32 // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - int32x4_t _input = vreinterpretq_s32_m128i(a); \ - int32x4_t _shuf = __builtin_shufflevector( \ - _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ - vreinterpretq_m128i_s32(_shuf); \ +#if defined(_sse2neon_shuffle) +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + int32x4_t _input = vreinterpretq_s32_m128i(a); \ + int32x4_t _shuf = \ + vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ + vreinterpretq_m128i_s32(_shuf); \ }) #else // generic -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - switch (imm) { \ - case _MM_SHUFFLE(1, 0, 3, 2): \ - ret = _mm_shuffle_epi_1032((a)); \ - break; \ - case _MM_SHUFFLE(2, 3, 0, 1): \ - ret = _mm_shuffle_epi_2301((a)); \ - break; \ - case _MM_SHUFFLE(0, 3, 2, 1): \ - ret = _mm_shuffle_epi_0321((a)); \ - break; \ - case _MM_SHUFFLE(2, 1, 0, 3): \ - ret = _mm_shuffle_epi_2103((a)); \ - break; \ - case _MM_SHUFFLE(1, 0, 1, 0): \ - ret = _mm_shuffle_epi_1010((a)); \ - break; \ - case _MM_SHUFFLE(1, 0, 0, 1): \ - ret = _mm_shuffle_epi_1001((a)); \ - break; \ - case _MM_SHUFFLE(0, 1, 0, 1): \ - ret = _mm_shuffle_epi_0101((a)); \ - break; \ - case _MM_SHUFFLE(2, 2, 1, 1): \ - ret = _mm_shuffle_epi_2211((a)); \ - break; \ - case _MM_SHUFFLE(0, 1, 2, 2): \ - ret = _mm_shuffle_epi_0122((a)); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 2): \ - ret = _mm_shuffle_epi_3332((a)); \ - break; \ - case _MM_SHUFFLE(0, 0, 0, 0): \ - ret = _mm_shuffle_epi32_splat((a), 0); \ - break; \ - case _MM_SHUFFLE(1, 1, 1, 1): \ - ret = _mm_shuffle_epi32_splat((a), 1); \ - break; \ - case _MM_SHUFFLE(2, 2, 2, 2): \ - ret = _mm_shuffle_epi32_splat((a), 2); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 3): \ - ret = _mm_shuffle_epi32_splat((a), 3); \ - break; \ - default: \ - ret = _mm_shuffle_epi32_default((a), (imm)); \ - break; \ - } \ - ret; \ - }) +#define _mm_shuffle_epi32(a, imm) \ + _sse2neon_define1( \ + __m128i, a, __m128i ret; switch (imm) { \ + case _MM_SHUFFLE(1, 0, 3, 2): \ + ret = _mm_shuffle_epi_1032(_a); \ + break; \ + case _MM_SHUFFLE(2, 3, 0, 1): \ + ret = _mm_shuffle_epi_2301(_a); \ + break; \ + case _MM_SHUFFLE(0, 3, 2, 1): \ + ret = _mm_shuffle_epi_0321(_a); \ + break; \ + case _MM_SHUFFLE(2, 1, 0, 3): \ + ret = _mm_shuffle_epi_2103(_a); \ + break; \ + case _MM_SHUFFLE(1, 0, 1, 0): \ + ret = _mm_shuffle_epi_1010(_a); \ + break; \ + case _MM_SHUFFLE(1, 0, 0, 1): \ + ret = _mm_shuffle_epi_1001(_a); \ + break; \ + case _MM_SHUFFLE(0, 1, 0, 1): \ + ret = _mm_shuffle_epi_0101(_a); \ + break; \ + case _MM_SHUFFLE(2, 2, 1, 1): \ + ret = _mm_shuffle_epi_2211(_a); \ + break; \ + case _MM_SHUFFLE(0, 1, 2, 2): \ + ret = _mm_shuffle_epi_0122(_a); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 2): \ + ret = _mm_shuffle_epi_3332(_a); \ + break; \ + case _MM_SHUFFLE(0, 0, 0, 0): \ + ret = _mm_shuffle_epi32_splat(_a, 0); \ + break; \ + case _MM_SHUFFLE(1, 1, 1, 1): \ + ret = _mm_shuffle_epi32_splat(_a, 1); \ + break; \ + case _MM_SHUFFLE(2, 2, 2, 2): \ + ret = _mm_shuffle_epi32_splat(_a, 2); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 3): \ + ret = _mm_shuffle_epi32_splat(_a, 3); \ + break; \ + default: \ + ret = _mm_shuffle_epi32_default(_a, (imm)); \ + break; \ + } _sse2neon_return(ret);) #endif // Shuffle double-precision (64-bit) floating-point elements using the control // in imm8, and store the results in dst. -// -// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] -// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_pd(a, b, imm8) \ - vreinterpretq_m128d_s64(__builtin_shufflevector( \ - vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \ - ((imm8 & 0x2) >> 1) + 2)) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pd(a, b, imm8) \ + vreinterpretq_m128d_s64( \ + vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ + imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) #else #define _mm_shuffle_pd(a, b, imm8) \ _mm_castsi128_pd(_mm_set_epi64x( \ @@ -5429,15 +5238,15 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shufflehi_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ - _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ - (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ - (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128i_s16(_shuf); \ +#if defined(_sse2neon_shuffle) +#define _mm_shufflehi_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = \ + vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ + (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ + (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128i_s16(_shuf); \ }) #else // generic #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) @@ -5445,11 +5254,11 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) +#if defined(_sse2neon_shuffle) #define _mm_shufflelo_epi16(a, imm) \ __extension__({ \ int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ + int16x8_t _shuf = vshuffleq_s16( \ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ vreinterpretq_m128i_s16(_shuf); \ @@ -5460,17 +5269,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // Shift packed 16-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5483,17 +5282,7 @@ FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) // Shift packed 32-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5506,17 +5295,7 @@ FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) // Shift packed 64-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF count[63:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5529,17 +5308,7 @@ FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) // Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~15)) @@ -5550,17 +5319,7 @@ FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) // Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~31)) @@ -5571,17 +5330,7 @@ FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF imm8[7:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~63)) @@ -5590,107 +5339,78 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); } -// Shift a left by imm8 bytes while shifting in zeros, and store the results in -// dst. -// -// tmp := imm8[7:0] -// IF tmp > 15 -// tmp := 16 -// FI -// dst[127:0] := a[127:0] << (tmp*8) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128 -FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)}; - return vreinterpretq_m128i_u8( - vld1q_u8(((uint8_t const *) tmp) + (16 - imm))); -} - +// Shift a left by imm8 bytes while shifting in zeros, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 +#define _mm_slli_si128(a, imm) \ + _sse2neon_define1( \ + __m128i, a, int8x16_t ret; \ + if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \ + else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ + else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a), \ + ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ + _sse2neon_return(vreinterpretq_m128i_s8(ret));) + // Compute the square root of packed double-precision (64-bit) floating-point // elements in a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); #else - double a0 = sqrt(((double *) &a)[0]); - double a1 = sqrt(((double *) &a)[1]); - return _mm_set_pd(a1, a0); + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double _a0 = sqrt(a0); + double _a1 = sqrt(a1); + return _mm_set_pd(_a1, _a0); #endif } // Compute the square root of the lower double-precision (64-bit) floating-point // element in b, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return _mm_move_sd(a, _mm_sqrt_pd(b)); #else - return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); + double _a, _b; + _a = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + _b = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + return _mm_set_pd(_a, sqrt(_b)); #endif } // Shift packed 16-bit integers in a right by count while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) -// ELSE -// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) { - int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + int64_t c = vgetq_lane_s64(count, 0); if (_sse2neon_unlikely(c & ~15)) return _mm_cmplt_epi16(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c))); + return vreinterpretq_m128i_s16( + vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c))); } // Shift packed 32-bit integers in a right by count while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) -// ELSE -// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) { - int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + int64_t c = vgetq_lane_s64(count, 0); if (_sse2neon_unlikely(c & ~31)) return _mm_cmplt_epi32(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c))); + return vreinterpretq_m128i_s32( + vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c))); } // Shift packed 16-bit integers in a right by imm8 while shifting in sign // bits, and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) -// ELSE -// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) { const int count = (imm & ~15) ? 15 : imm; @@ -5699,46 +5419,23 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) -// ELSE -// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srai_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) == 0)) { \ - ret = a; \ - } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_s32( \ - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \ - } else { \ - ret = vreinterpretq_m128i_s32( \ - vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ - } \ - ret; \ - }) +#define _mm_srai_epi32(a, imm) \ + _sse2neon_define0( \ + __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) { \ + ret = _a; \ + } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ + ret = vreinterpretq_m128i_s32( \ + vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \ + } else { \ + ret = vreinterpretq_m128i_s32( \ + vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31)); \ + } _sse2neon_return(ret);) // Shift packed 16-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5751,17 +5448,7 @@ FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) // Shift packed 32-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5774,17 +5461,7 @@ FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) // Shift packed 64-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF count[63:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5797,105 +5474,59 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 -#define _mm_srli_epi16(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) & ~15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u16( \ - vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \ - } \ - ret; \ - }) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 +#define _mm_srli_epi16(a, imm) \ + _sse2neon_define0( \ + __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u16( \ + vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \ + } _sse2neon_return(ret);) // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) & ~31)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u32( \ - vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \ - } \ - ret; \ - }) +#define _mm_srli_epi32(a, imm) \ + _sse2neon_define0( \ + __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u32( \ + vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \ + } _sse2neon_return(ret);) // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF imm8[7:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 -#define _mm_srli_epi64(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) & ~63)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u64( \ - vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \ - } \ - ret; \ - }) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 +#define _mm_srli_epi64(a, imm) \ + _sse2neon_define0( \ + __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u64( \ + vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \ + } _sse2neon_return(ret);) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// -// tmp := imm8[7:0] -// IF tmp > 15 -// tmp := 16 -// FI -// dst[127:0] := a[127:0] >> (tmp*8) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128 -FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)}; - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 +#define _mm_srli_si128(a, imm) \ + _sse2neon_define1( \ + __m128i, a, int8x16_t ret; \ + if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ + else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \ + (imm > 15 ? 0 : imm)); \ + _sse2neon_return(vreinterpretq_m128i_s8(ret));) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary // or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); #else vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); @@ -5905,10 +5536,10 @@ FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); @@ -5921,18 +5552,19 @@ FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // memory. mem_addr does not need to be aligned on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); #else vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); #endif } -// Stores four 32-bit integer values as (as a __m128i value) at the address p. -// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +// Store 128-bits of integer data from a into memory. mem_addr must be aligned +// on a 16-byte boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128 FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); @@ -5941,26 +5573,23 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd #define _mm_store1_pd _mm_store_pd1 // Store the upper double-precision (64-bit) floating-point element from a into // memory. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); #else vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); #endif } -// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. -// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +// Store 64-bit integer from the first element of a into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64 FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) { vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); @@ -5968,13 +5597,10 @@ FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) // Store the lower double-precision (64-bit) floating-point element from a into // memory. -// -// MEM[mem_addr+63:mem_addr] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); #else vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); @@ -5984,11 +5610,7 @@ FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) // Store 2 double-precision (64-bit) floating-point elements from a into memory // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// MEM[mem_addr+127:mem_addr+64] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) { float32x4_t f = vreinterpretq_f32_m128d(a); @@ -5998,21 +5620,23 @@ FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr does not need to be aligned on any // particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) { _mm_store_pd(mem_addr, a); } -// Stores 128-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 +// Store 128-bits of integer data from a into memory. mem_addr does not need to +// be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); } -// Stores 32-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 +// Store 32-bit integer from the first element of a into memory. mem_addr does +// not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) { vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); @@ -6022,22 +5646,22 @@ FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) // elements) from a into memory using a non-temporal memory hint. mem_addr must // be aligned on a 16-byte boundary or a general-protection exception may be // generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) { #if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); -#elif defined(__aarch64__) + __builtin_nontemporal_store(a, (__m128d *) p); +#elif defined(__aarch64__) || defined(_M_ARM64) vst1q_f64(p, vreinterpretq_f64_m128d(a)); #else vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); #endif } -// Stores the data in a to the address p without polluting the caches. If the -// cache line containing address p is already in the cache, the cache will be -// updated. -// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +// Store 128-bits of integer data from a into memory using a non-temporal memory +// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection +// exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128 FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) { #if __has_builtin(__builtin_nontemporal_store) @@ -6050,7 +5674,7 @@ FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) // Store 32-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 FORCE_INLINE void _mm_stream_si32(int *p, int a) { vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); @@ -6059,7 +5683,7 @@ FORCE_INLINE void _mm_stream_si32(int *p, int a) // Store 64-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) { vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); @@ -6067,32 +5691,25 @@ FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or -// unsigned 32-bit integers of a. -// -// r0 := a0 - b0 -// r1 := a1 - b1 -// r2 := a2 - b2 -// r3 := a3 - b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx +// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32 FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, -// and store the results in dst. -// r0 := a0 - b0 -// r1 := a1 - b1 +// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64 FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) { return vreinterpretq_m128i_s64( @@ -6101,7 +5718,7 @@ FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -6111,24 +5728,24 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) // Subtract packed double-precision (64-bit) floating-point elements in b from // packed double-precision (64-bit) floating-point elements in a, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] - b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - double *da = (double *) &a; - double *db = (double *) &b; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); double c[2]; - c[0] = da[0] - db[0]; - c[1] = da[1] - db[1]; + c[0] = a0 - b0; + c[1] = a1 - b1; return vld1q_f32((float32_t *) c); #endif } @@ -6137,71 +5754,50 @@ FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) // the lower double-precision (64-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_sub_pd(a, b)); } // Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. -// -// dst[63:0] := a[63:0] - b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); } -// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r7 := SignedSaturate(a7 - b7) -// -// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90) +// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a +// using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16 FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r15 := SignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90) +// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a +// using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8 FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); } -// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit -// integers of a and saturates.. -// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx +// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit +// integers in a using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16 FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit -// integers of a and saturates. -// -// r0 := UnsignedSaturate(a0 - b0) -// r1 := UnsignedSaturate(a1 - b1) -// ... -// r15 := UnsignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) +// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit +// integers in a using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8 FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -6216,7 +5812,7 @@ FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) #define _mm_ucomineq_sd _mm_comineq_sd // Return vector of type __m128d with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd FORCE_INLINE __m128d _mm_undefined_pd(void) { #if defined(__GNUC__) || defined(__clang__) @@ -6224,28 +5820,21 @@ FORCE_INLINE __m128d _mm_undefined_pd(void) #pragma GCC diagnostic ignored "-Wuninitialized" #endif __m128d a; +#if defined(_MSC_VER) && !defined(__clang__) + a = _mm_setzero_pd(); +#endif return a; #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif } -// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the -// upper 4 signed or unsigned 16-bit integers in b. -// -// r0 := a4 -// r1 := b4 -// r2 := a5 -// r3 := b5 -// r4 := a6 -// r5 := b6 -// r6 := a7 -// r7 := b7 -// -// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +// Unpack and interleave 16-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16 FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s16( vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); #else @@ -6256,12 +5845,12 @@ FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) #endif } -// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the -// upper 2 signed or unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +// Unpack and interleave 32-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32 FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s32( vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); #else @@ -6272,33 +5861,27 @@ FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) #endif } -// Interleaves the upper signed or unsigned 64-bit integer in a with the -// upper signed or unsigned 64-bit integer in b. -// -// r0 := a1 -// r1 := b1 +// Unpack and interleave 64-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64 FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) { +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128i_s64( + vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); +#endif } -// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a8 -// r1 := b8 -// r2 := a9 -// r3 := b9 -// ... -// r14 := a15 -// r15 := b15 -// -// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +// Unpack and interleave 8-bit integers from the high half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8 FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s8( vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); #else @@ -6313,18 +5896,10 @@ FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) // Unpack and interleave double-precision (64-bit) floating-point elements from // the high half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[127:64] -// dst[127:64] := src2[127:64] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else @@ -6334,22 +5909,12 @@ FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) #endif } -// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the -// lower 4 signed or unsigned 16-bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// r4 := a2 -// r5 := b2 -// r6 := a3 -// r7 := b3 -// -// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +// Unpack and interleave 16-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16 FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s16( vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); #else @@ -6360,18 +5925,12 @@ FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) #endif } -// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the -// lower 2 signed or unsigned 32 - bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +// Unpack and interleave 32-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32 FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s32( vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); #else @@ -6382,28 +5941,27 @@ FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) #endif } +// Unpack and interleave 64-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64 FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) { +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128i_s64( + vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); +#endif } -// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// ... -// r14 := a7 -// r15 := b7 -// -// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +// Unpack and interleave 8-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8 FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s8( vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); #else @@ -6416,18 +5974,10 @@ FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) // Unpack and interleave double-precision (64-bit) floating-point elements from // the low half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[63:0] -// dst[127:64] := src2[63:0] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else @@ -6439,21 +5989,16 @@ FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) // Compute the bitwise XOR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] XOR b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in -// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +// Compute the bitwise XOR of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128 FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -6465,21 +6010,11 @@ FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) // Alternatively add and subtract packed double-precision (64-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF ((j & 1) == 0) -// dst[i+63:i] := a[i+63:i] - b[i+63:i] -// ELSE -// dst[i+63:i] := a[i+63:i] + b[i+63:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) { _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(mask))); @@ -6491,11 +6026,12 @@ FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) // Alternatively add and subtract packed single-precision (32-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) { _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); -#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */ +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_FMA) /* VFPv4+ */ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(mask), vreinterpretq_f32_m128(b))); @@ -6506,26 +6042,32 @@ FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) // Horizontally add adjacent pairs of double-precision (64-bit) floating-point // elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - double *da = (double *) &a; - double *db = (double *) &b; - double c[] = {da[0] + da[1], db[0] + db[1]}; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); + double c[] = {a0 + a1, b0 + b1}; return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); #endif } -// Computes pairwise add of each argument as single-precision, floating-point -// values a and b. -// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +// Horizontally add adjacent pairs of single-precision (32-bit) floating-point +// elements in a and b, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32( vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); #else @@ -6540,30 +6082,36 @@ FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) // Horizontally subtract adjacent pairs of double-precision (64-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd -FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd +FORCE_INLINE __m128d _mm_hsub_pd(__m128d a, __m128d b) { -#if defined(__aarch64__) - float64x2_t a = vreinterpretq_f64_m128d(_a); - float64x2_t b = vreinterpretq_f64_m128d(_b); +#if defined(__aarch64__) || defined(_M_ARM64) + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); return vreinterpretq_m128d_f64( - vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); -#else - double *da = (double *) &_a; - double *db = (double *) &_b; - double c[] = {da[0] - da[1], db[0] - db[1]}; + vsubq_f64(vuzp1q_f64(_a, _b), vuzp2q_f64(_a, _b))); +#else + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); + double c[] = {a0 - a1, b0 - b1}; return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); #endif } // Horizontally subtract adjacent pairs of single-precision (32-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) { float32x4_t a = vreinterpretq_f32_m128(_a); float32x4_t b = vreinterpretq_f32_m128(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128_f32( vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); #else @@ -6575,27 +6123,20 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // Load 128-bits of integer data from unaligned memory into dst. This intrinsic // may perform better than _mm_loadu_si128 when the data crosses a cache line // boundary. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 #define _mm_lddqu_si128 _mm_loadu_si128 // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd #define _mm_loaddup_pd _mm_load1_pd // Duplicate the low double-precision (64-bit) floating-point element from a, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64( vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); #else @@ -6606,11 +6147,14 @@ FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) // Duplicate odd-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128_f32( + vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); #else float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); @@ -6622,11 +6166,14 @@ FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) // Duplicate even-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128_f32( + vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); #else float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -6640,13 +6187,7 @@ FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) // Compute the absolute value of packed signed 16-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) { return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); @@ -6654,13 +6195,7 @@ FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) // Compute the absolute value of packed signed 32-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) { return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); @@ -6668,13 +6203,7 @@ FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) // Compute the absolute value of packed signed 8-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) { return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); @@ -6682,13 +6211,7 @@ FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) // Compute the absolute value of packed signed 16-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) { return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); @@ -6696,13 +6219,7 @@ FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) // Compute the absolute value of packed signed 32-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) { return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); @@ -6710,13 +6227,7 @@ FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) // Compute the absolute value of packed signed 8-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) { return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); @@ -6724,65 +6235,69 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) // Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift // the result right by imm8 bytes, and store the low 16 bytes in dst. -// -// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) -// dst[127:0] := tmp[127:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 -FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) -{ - if (_sse2neon_unlikely(imm & ~31)) - return _mm_setzero_si128(); - int idx; - uint8x16_t tmp[2]; - if (imm >= 16) { - idx = imm - 16; - tmp[0] = vreinterpretq_u8_m128i(a); - tmp[1] = vdupq_n_u8(0); - } else { - idx = imm; - tmp[0] = vreinterpretq_u8_m128i(b); - tmp[1] = vreinterpretq_u8_m128i(a); - } - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 +#if defined(__GNUC__) && !defined(__clang__) +#define _mm_alignr_epi8(a, b, imm) \ + __extension__({ \ + uint8x16_t _a = vreinterpretq_u8_m128i(a); \ + uint8x16_t _b = vreinterpretq_u8_m128i(b); \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) \ + ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) \ + ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ + else \ + ret = \ + vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ + ret; \ + }) + +#else +#define _mm_alignr_epi8(a, b, imm) \ + _sse2neon_define2( \ + __m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a); \ + uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) ret = \ + vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) ret = \ + _mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0); \ + else ret = \ + vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \ + _sse2neon_return(ret);) + +#endif // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift // the result right by imm8 bytes, and store the low 8 bytes in dst. -// -// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) -// dst[63:0] := tmp[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 #define _mm_alignr_pi8(a, b, imm) \ - __extension__({ \ - __m64 ret; \ - if (_sse2neon_unlikely((imm) >= 16)) { \ + _sse2neon_define2( \ + __m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) { \ ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ } else { \ - uint8x8_t tmp_low, tmp_high; \ + uint8x8_t tmp_low; \ + uint8x8_t tmp_high; \ if ((imm) >= 8) { \ - const int idx = (imm) -8; \ - tmp_low = vreinterpret_u8_m64(a); \ + const int idx = (imm) - 8; \ + tmp_low = vreinterpret_u8_m64(_a); \ tmp_high = vdup_n_u8(0); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ } else { \ const int idx = (imm); \ - tmp_low = vreinterpret_u8_m64(b); \ - tmp_high = vreinterpret_u8_m64(a); \ + tmp_low = vreinterpret_u8_m64(_b); \ + tmp_high = vreinterpret_u8_m64(_a); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ } \ - } \ - ret; \ - }) + } _sse2neon_return(ret);) -// Computes pairwise add of each argument as a 16-bit signed or unsigned integer -// values a and b. +// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the +// signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16 FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); #else return vreinterpretq_m128i_s16( @@ -6791,20 +6306,25 @@ FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) #endif } -// Computes pairwise add of each argument as a 32-bit signed or unsigned integer -// values a and b. +// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the +// signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32 FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) || defined(_M_ARM64) + return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); +#else return vreinterpretq_m128i_s32( vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +#endif } // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the // signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -6813,18 +6333,19 @@ FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the // signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) { return vreinterpret_m64_s32( vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); } -// Computes saturated pairwise sub of each argument as a 16-bit signed -// integer values a and b. +// Horizontally add adjacent pairs of signed 16-bit integers in a and b using +// saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16 FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); return vreinterpretq_s64_s16( @@ -6844,12 +6365,12 @@ FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) // Horizontally add adjacent pairs of signed 16-bit integers in a and b using // saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); #else int16x4x2_t res = vuzp_s16(a, b); @@ -6859,12 +6380,12 @@ FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s16( vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); #else @@ -6875,12 +6396,12 @@ FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); int32x4_t b = vreinterpretq_s32_m128i(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s32( vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); #else @@ -6891,12 +6412,12 @@ FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); #else int16x4x2_t c = vuzp_s16(a, b); @@ -6906,12 +6427,12 @@ FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); int32x2_t b = vreinterpret_s32_m64(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); #else int32x2x2_t c = vuzp_s32(a, b); @@ -6919,14 +6440,14 @@ FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) #endif } -// Computes saturated pairwise difference of each argument as a 16-bit signed -// integer values a and b. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 +// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b +// using saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s16( vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); #else @@ -6937,12 +6458,12 @@ FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b // using saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); int16x4_t b = vreinterpret_s16_m64(_b); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); #else int16x4x2_t c = vuzp_s16(a, b); @@ -6954,15 +6475,10 @@ FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, // and pack the saturated results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] + -// a[i+7:i]*b[i+7:i] ) -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16 FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint8x16_t a = vreinterpretq_u8_m128i(_a); int8x16_t b = vreinterpretq_s8_m128i(_b); int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), @@ -6998,7 +6514,7 @@ FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and // pack the saturated results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) { uint16x4_t a = vreinterpret_u16_m64(_a); @@ -7023,12 +6539,7 @@ FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Shift right by 15 bits while rounding up, and store // the packed 16-bit integers in dst. -// -// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15) -// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15) -// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15) -// ... -// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16 FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) { // Has issues due to saturation @@ -7052,7 +6563,7 @@ FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Truncate each intermediate integer to the 18 most // significant bits, round by adding 1, and store bits [16:1] to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) { int32x4_t mul_extend = @@ -7064,14 +6575,14 @@ FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) { int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b uint8x16_t idx_masked = vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); #elif defined(__GNUC__) int8x16_t ret; @@ -7094,18 +6605,7 @@ FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// IF b[i+7] == 1 -// dst[i+7:i] := 0 -// ELSE -// index[2:0] := b[i+2:i] -// dst[i+7:i] := a[index*8+7:index*8] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) { const int8x8_t controlMask = @@ -7118,16 +6618,7 @@ FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) // 16-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..7 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16 FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); @@ -7137,7 +6628,7 @@ FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) // (b < 0) ? 0xFFFF : 0 uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15)); // (b == 0) ? 0xFFFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b)); #else int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0))); @@ -7155,16 +6646,7 @@ FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) // 32-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..3 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32 FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); @@ -7175,7 +6657,7 @@ FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31)); // (b == 0) ? 0xFFFFFFFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b)); #else int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0))); @@ -7193,16 +6675,7 @@ FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) // 8-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..15 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8 FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) { int8x16_t a = vreinterpretq_s8_m128i(_a); @@ -7213,7 +6686,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); // (b == 0) ? 0xFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); #else int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); @@ -7231,19 +6704,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) // Negate packed 16-bit integers in a when the corresponding signed 16-bit // integer in b is negative, and store the results in dst. Element in dst are // zeroed out when the corresponding element in b is zero. -// -// FOR j := 0 to 3 -// i := j*16 -// IF b[i+15:i] < 0 -// dst[i+15:i] := -(a[i+15:i]) -// ELSE IF b[i+15:i] == 0 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := a[i+15:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -7254,7 +6715,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15)); // (b == 0) ? 0xFFFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b)); #else int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); @@ -7272,19 +6733,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) // Negate packed 32-bit integers in a when the corresponding signed 32-bit // integer in b is negative, and store the results in dst. Element in dst are // zeroed out when the corresponding element in b is zero. -// -// FOR j := 0 to 1 -// i := j*32 -// IF b[i+31:i] < 0 -// dst[i+31:i] := -(a[i+31:i]) -// ELSE IF b[i+31:i] == 0 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := a[i+31:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); @@ -7295,7 +6744,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31)); // (b == 0) ? 0xFFFFFFFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b)); #else int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); @@ -7313,19 +6762,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) // Negate packed 8-bit integers in a when the corresponding signed 8-bit integer // in b is negative, and store the results in dst. Element in dst are zeroed out // when the corresponding element in b is zero. -// -// FOR j := 0 to 7 -// i := j*8 -// IF b[i+7:i] < 0 -// dst[i+7:i] := -(a[i+7:i]) -// ELSE IF b[i+7:i] == 0 -// dst[i+7:i] := 0 -// ELSE -// dst[i+7:i] := a[i+7:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) { int8x8_t a = vreinterpret_s8_m64(_a); @@ -7336,7 +6773,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7)); // (b == 0) ? 0xFF : 0 -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b)); #else int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); @@ -7355,57 +6792,50 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed 16-bit integers from a and b using control mask imm8, and store // the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[j] -// dst[i+15:i] := b[i+15:i] -// ELSE -// dst[i+15:i] := a[i+15:i] -// FI -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16 // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, // __constrange(0,255) int imm) -#define _mm_blend_epi16(a, b, imm) \ - __extension__({ \ - const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \ - uint16x8_t _mask_vec = vld1q_u16(_mask); \ - uint16x8_t _a = vreinterpretq_u16_m128i(a); \ - uint16x8_t _b = vreinterpretq_u16_m128i(b); \ - vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \ - }) +#define _mm_blend_epi16(a, b, imm) \ + _sse2neon_define2( \ + __m128i, a, b, \ + const uint16_t _mask[8] = \ + _sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 1)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 2)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 3)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 4)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 5)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 6)) ? (uint16_t) - 1 : 0x0, \ + ((imm) & (1 << 7)) ? (uint16_t) - 1 : 0x0); \ + uint16x8_t _mask_vec = vld1q_u16(_mask); \ + uint16x8_t __a = vreinterpretq_u16_m128i(_a); \ + uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \ + vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));) // Blend packed double-precision (64-bit) floating-point elements from a and b // using control mask imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd -#define _mm_blend_pd(a, b, imm) \ - __extension__({ \ - const uint64_t _mask[2] = { \ - ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ - ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \ - uint64x2_t _mask_vec = vld1q_u64(_mask); \ - uint64x2_t _a = vreinterpretq_u64_m128d(a); \ - uint64x2_t _b = vreinterpretq_u64_m128d(b); \ - vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \ - }) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd +#define _mm_blend_pd(a, b, imm) \ + _sse2neon_define2( \ + __m128d, a, b, \ + const uint64_t _mask[2] = \ + _sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ + ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \ + uint64x2_t _mask_vec = vld1q_u64(_mask); \ + uint64x2_t __a = vreinterpretq_u64_m128d(_a); \ + uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return( \ + vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) { - const uint32_t ALIGN_STRUCT(16) - data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, - ((imm8) & (1 << 1)) ? UINT32_MAX : 0, - ((imm8) & (1 << 2)) ? UINT32_MAX : 0, - ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; + const uint32_t + ALIGN_STRUCT(16) data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, + ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; uint32x4_t mask = vld1q_u32(data); float32x4_t a = vreinterpretq_f32_m128(_a); float32x4_t b = vreinterpretq_f32_m128(_b); @@ -7414,15 +6844,7 @@ FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) // Blend packed 8-bit integers from a and b using mask, and store the results in // dst. -// -// FOR j := 0 to 15 -// i := j*8 -// IF mask[i+7] -// dst[i+7:i] := b[i+7:i] -// ELSE -// dst[i+7:i] := a[i+7:i] -// FI -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8 FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7435,12 +6857,12 @@ FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) // Blend packed double-precision (64-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) { uint64x2_t mask = vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) float64x2_t a = vreinterpretq_f64_m128d(_a); float64x2_t b = vreinterpretq_f64_m128d(_b); return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); @@ -7453,7 +6875,7 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7467,24 +6889,27 @@ FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) // Round the packed double-precision (64-bit) floating-point elements in a up // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a))); #else - double *f = (double *) &a; - return _mm_set_pd(ceil(f[1]), ceil(f[0])); + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + return _mm_set_pd(ceil(a1), ceil(a0)); #endif } // Round the packed single-precision (32-bit) floating-point elements in a up to // an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7496,7 +6921,7 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_ceil_pd(b)); @@ -7506,11 +6931,7 @@ FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) // an integer value, store the result as a single-precision floating-point // element in the lower element of dst, and copy the upper 3 packed elements // from a to the upper elements of dst. -// -// dst[31:0] := CEIL(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_ceil_ps(b)); @@ -7520,7 +6941,7 @@ FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) // in dst FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_u64( vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); #else @@ -7533,16 +6954,18 @@ FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) #endif } -// Converts the four signed 16-bit integers in the lower 64 bits to four signed -// 32-bit integers. +// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32 FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) { return vreinterpretq_m128i_s32( vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); } -// Converts the two signed 16-bit integers in the lower 32 bits two signed -// 32-bit integers. +// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64 FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) { int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ @@ -7551,16 +6974,18 @@ FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) return vreinterpretq_m128i_s64(s64x2); } -// Converts the two signed 32-bit integers in the lower 64 bits to two signed -// 64-bit integers. +// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64 FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) { return vreinterpretq_m128i_s64( vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); } -// Converts the four unsigned 8-bit integers in the lower 16 bits to four -// unsigned 32-bit integers. +// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16 FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7568,8 +6993,9 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) return vreinterpretq_m128i_s16(s16x8); } -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. +// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32 FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7578,8 +7004,9 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) return vreinterpretq_m128i_s32(s32x4); } -// Converts the two signed 8-bit integers in the lower 32 bits to four -// signed 64-bit integers. +// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit +// integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64 FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ @@ -7589,16 +7016,18 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) return vreinterpretq_m128i_s64(s64x2); } -// Converts the four unsigned 16-bit integers in the lower 64 bits to four -// unsigned 32-bit integers. +// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32 FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) { return vreinterpretq_m128i_u32( vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); } -// Converts the two unsigned 16-bit integers in the lower 32 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64 FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) { uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ @@ -7607,8 +7036,9 @@ FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) return vreinterpretq_m128i_u64(u64x2); } -// Converts the two unsigned 32-bit integers in the lower 64 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64 FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) { return vreinterpretq_m128i_u64( @@ -7617,7 +7047,7 @@ FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ @@ -7625,9 +7055,9 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) return vreinterpretq_m128i_u16(u16x8); } -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32 FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7636,8 +7066,9 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) return vreinterpretq_m128i_u32(u32x4); } -// Converts the two unsigned 8-bit integers in the lower 16 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed +// 64-bit integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64 FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ @@ -7650,7 +7081,7 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) // Conditionally multiply the packed double-precision (64-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, and // conditionally store the sum in dst using the low 4 bits of imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) { // Generate mask value from constant immediate bit value @@ -7667,7 +7098,7 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask)); __m128d tmp = _mm_and_pd(mul, mulMask); #else -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) * vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0) : 0; @@ -7675,16 +7106,28 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1) : 0; #else - double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0; - double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0; + double a0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + double a1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + double b0 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0)); + double b1 = + sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1)); + double d0 = (imm & 0x10) ? a0 * b0 : 0; + double d1 = (imm & 0x20) ? a1 * b1 : 0; #endif __m128d tmp = _mm_set_pd(d1, d0); #endif // Sum the products -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp)); #else - double sum = *((double *) &tmp) + *(((double *) &tmp) + 1); + double _tmp0 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(tmp), 0)); + double _tmp1 = sse2neon_recast_u64_f64( + vgetq_lane_u64(vreinterpretq_u64_m128d(tmp), 1)); + double sum = _tmp0 + _tmp1; #endif // Conditionally store the sum const __m128d sumMask = @@ -7696,63 +7139,69 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) // Conditionally multiply the packed single-precision (32-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, // and conditionally store the sum in dst using the low 4 bits of imm. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) { -#if defined(__aarch64__) + float32x4_t elementwise_prod = _mm_mul_ps(a, b); + +#if defined(__aarch64__) || defined(_M_ARM64) /* shortcuts */ if (imm == 0xFF) { - return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b))); + return _mm_set1_ps(vaddvq_f32(elementwise_prod)); } - if (imm == 0x7F) { - float32x4_t m = _mm_mul_ps(a, b); - m[3] = 0; - return _mm_set1_ps(vaddvq_f32(m)); + + if ((imm & 0x0F) == 0x0F) { + if (!(imm & (1 << 4))) + elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0); + if (!(imm & (1 << 5))) + elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1); + if (!(imm & (1 << 6))) + elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2); + if (!(imm & (1 << 7))) + elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3); + + return _mm_set1_ps(vaddvq_f32(elementwise_prod)); } #endif - float s = 0, c = 0; - float32x4_t f32a = vreinterpretq_f32_m128(a); - float32x4_t f32b = vreinterpretq_f32_m128(b); + float s = 0.0f; - /* To improve the accuracy of floating-point summation, Kahan algorithm - * is used for each operation. - */ if (imm & (1 << 4)) - _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]); + s += vgetq_lane_f32(elementwise_prod, 0); if (imm & (1 << 5)) - _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]); + s += vgetq_lane_f32(elementwise_prod, 1); if (imm & (1 << 6)) - _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]); + s += vgetq_lane_f32(elementwise_prod, 2); if (imm & (1 << 7)) - _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]); - s += c; - - float32x4_t res = { - (imm & 0x1) ? s : 0, - (imm & 0x2) ? s : 0, - (imm & 0x4) ? s : 0, - (imm & 0x8) ? s : 0, + s += vgetq_lane_f32(elementwise_prod, 3); + + const float32_t res[4] = { + (imm & 0x1) ? s : 0.0f, + (imm & 0x2) ? s : 0.0f, + (imm & 0x4) ? s : 0.0f, + (imm & 0x8) ? s : 0.0f, }; - return vreinterpretq_m128_f32(res); + return vreinterpretq_m128_f32(vld1q_f32(res)); } -// Extracts the selected signed or unsigned 32-bit integer from a and zero -// extends. +// Extract a 32-bit integer from a, selected with imm8, and store the result in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32 // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) #define _mm_extract_epi32(a, imm) \ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) -// Extracts the selected signed or unsigned 64-bit integer from a and zero -// extends. +// Extract a 64-bit integer from a, selected with imm8, and store the result in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64 // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) #define _mm_extract_epi64(a, imm) \ vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) -// Extracts the selected signed or unsigned 8-bit integer from a and zero -// extends. -// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8 +// Extract an 8-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a, +// __constrange(0,16) int imm) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) // Extracts the selected single-precision (32-bit) floating-point from a. @@ -7762,24 +7211,27 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Round the packed double-precision (64-bit) floating-point elements in a down // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd FORCE_INLINE __m128d _mm_floor_pd(__m128d a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a))); #else - double *f = (double *) &a; - return _mm_set_pd(floor(f[1]), floor(f[0])); + double a0, a1; + a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)); + a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1)); + return _mm_set_pd(floor(a1), floor(a0)); #endif } // Round the packed single-precision (32-bit) floating-point elements in a down // to an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps FORCE_INLINE __m128 _mm_floor_ps(__m128 a) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7791,7 +7243,7 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_floor_pd(b)); @@ -7801,80 +7253,65 @@ FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) // an integer value, store the result as a single-precision floating-point // element in the lower element of dst, and copy the upper 3 packed elements // from a to the upper elements of dst. -// -// dst[31:0] := FLOOR(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_floor_ps(b)); } -// Inserts the least significant 32 bits of b into the selected 32-bit integer -// of a. +// Copy a to dst, and insert the 32-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32 // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, // __constrange(0,4) int imm) -#define _mm_insert_epi32(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \ - }) +#define _mm_insert_epi32(a, b, imm) \ + vreinterpretq_m128i_s32( \ + vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))) -// Inserts the least significant 64 bits of b into the selected 64-bit integer -// of a. +// Copy a to dst, and insert the 64-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64 // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, // __constrange(0,2) int imm) -#define _mm_insert_epi64(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s64( \ - vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \ - }) +#define _mm_insert_epi64(a, b, imm) \ + vreinterpretq_m128i_s64( \ + vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))) -// Inserts the least significant 8 bits of b into the selected 8-bit integer -// of a. +// Copy a to dst, and insert the lower 8-bit integer from i into dst at the +// location specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8 // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, // __constrange(0,16) int imm) -#define _mm_insert_epi8(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s8( \ - vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \ - }) +#define _mm_insert_epi8(a, b, imm) \ + vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))) // Copy a to tmp, then insert a single-precision (32-bit) floating-point // element from b into tmp using the control in imm8. Store tmp to dst using // the mask in imm8 (elements are zeroed out when the corresponding bit is set). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps -#define _mm_insert_ps(a, b, imm8) \ - __extension__({ \ - float32x4_t tmp1 = \ - vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \ - vreinterpretq_f32_m128(a), 0); \ - float32x4_t tmp2 = \ - vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \ - ((imm8 >> 4) & 0x3)); \ - const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ - ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \ - uint32x4_t mask = vld1q_u32(data); \ - float32x4_t all_zeros = vdupq_n_f32(0); \ - \ - vreinterpretq_m128_f32( \ - vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \ - }) - -// epi versions of min/max -// Computes the pariwise maximums of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 > b0) ? a0 : b0 -// r1 := (a1 > b1) ? a1 : b1 -// r2 := (a2 > b2) ? a2 : b2 -// r3 := (a3 > b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps +#define _mm_insert_ps(a, b, imm8) \ + _sse2neon_define2( \ + __m128, a, b, \ + float32x4_t tmp1 = \ + vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3), \ + vreinterpretq_f32_m128(_a), 0); \ + float32x4_t tmp2 = \ + vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), \ + vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \ + const uint32_t data[4] = \ + _sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 3)) ? UINT32_MAX : 0); \ + uint32x4_t mask = vld1q_u32(data); \ + float32x4_t all_zeros = vdupq_n_f32(0); \ + \ + _sse2neon_return(vreinterpretq_m128_f32( \ + vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));) + +// Compare packed signed 32-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32 FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -7883,7 +7320,7 @@ FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7892,7 +7329,7 @@ FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7901,23 +7338,16 @@ FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); } -// Computes the pariwise minima of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 < b0) ? a0 : b0 -// r1 := (a1 < b1) ? a1 : b1 -// r2 := (a2 < b2) ? a2 : b2 -// r3 := (a3 < b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32 FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -7926,7 +7356,7 @@ FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7935,7 +7365,7 @@ FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7944,7 +7374,7 @@ FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7953,29 +7383,22 @@ FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) // Horizontally compute the minimum amongst the packed unsigned 16-bit integers // in a, store the minimum and index in dst, and zero the remaining bits in dst. -// -// index[2:0] := 0 -// min[15:0] := a[15:0] -// FOR j := 0 to 7 -// i := j*16 -// IF a[i+15:i] < min[15:0] -// index[2:0] := j -// min[15:0] := a[i+15:i] -// FI -// ENDFOR -// dst[15:0] := min[15:0] -// dst[18:16] := index[2:0] -// dst[127:19] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) { __m128i dst; uint16_t min, idx = 0; +#if defined(__aarch64__) || defined(_M_ARM64) // Find the minimum value -#if defined(__aarch64__) min = vminvq_u16(vreinterpretq_u16_m128i(a)); + + // Get the index of the minimum value + static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; + uint16x8_t minv = vdupq_n_u16(min); + uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); + idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); #else + // Find the minimum value __m64 tmp; tmp = vreinterpret_m64_u16( vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), @@ -7985,7 +7408,6 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) tmp = vreinterpret_m64_u16( vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); -#endif // Get the index of the minimum value int i; for (i = 0; i < 8; i++) { @@ -7995,6 +7417,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) } a = _mm_srli_si128(a, 2); } +#endif // Generate result dst = _mm_setzero_si128(); dst = vreinterpretq_m128i_u16( @@ -8010,7 +7433,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) // quadruplets from a. One quadruplet is selected from b starting at on the // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit // integers selected from a starting at the offset specified in imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) { uint8x16_t _a, _b; @@ -8027,6 +7450,8 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) default: #if defined(__GNUC__) || defined(__clang__) __builtin_unreachable(); +#elif defined(_MSC_VER) + __assume(0); #endif break; } @@ -8051,20 +7476,22 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) default: #if defined(__GNUC__) || defined(__clang__) __builtin_unreachable(); +#elif defined(_MSC_VER) + __assume(0); #endif break; } int16x8_t c04, c15, c26, c37; uint8x8_t low_b = vget_low_u8(_b); - c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); -#if defined(__aarch64__) + c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); + uint8x16_t _a_1 = vextq_u8(_a, _a, 1); + c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); + uint8x16_t _a_2 = vextq_u8(_a, _a, 2); + c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); + uint8x16_t _a_3 = vextq_u8(_a, _a, 3); + c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); +#if defined(__aarch64__) || defined(_M_ARM64) // |0|4|2|6| c04 = vpaddq_s16(c04, c26); // |1|5|3|7| @@ -8090,9 +7517,7 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) // Multiply the low signed 32-bit integers from each packed 64-bit element in // a and b, and store the signed 64-bit results in dst. -// -// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0 -// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32 FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) { // vmull_s32 upcasts instead of masking, so we downcast. @@ -8101,26 +7526,18 @@ FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); } -// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or -// unsigned 32-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit +// integers, and store the low 32 bits of the intermediate integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32 FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// r2 := UnsignedSaturate(a2) -// r3 := UnsignedSaturate(a3) -// r4 := UnsignedSaturate(b0) -// r5 := UnsignedSaturate(b1) -// r6 := UnsignedSaturate(b2) -// r7 := UnsignedSaturate(b3) +// Convert packed signed 32-bit integers from a and b to packed 16-bit integers +// using unsigned saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32 FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -8131,10 +7548,10 @@ FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) // Round the packed double-precision (64-bit) floating-point elements in a using // the rounding parameter, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) switch (rounding) { case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a))); @@ -8203,7 +7620,8 @@ FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) { -#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) +#if (defined(__aarch64__) || defined(_M_ARM64)) || \ + defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (rounding) { case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); @@ -8260,7 +7678,7 @@ FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) // the rounding parameter, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) { return _mm_move_sd(a, _mm_round_pd(b, rounding)); @@ -8280,7 +7698,7 @@ FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) // (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress // exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see // _MM_SET_ROUNDING_MODE -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) { return _mm_move_ss(a, _mm_round_ps(b, rounding)); @@ -8289,10 +7707,7 @@ FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) // Load 128-bits of integer data from memory into dst using a non-temporal // memory hint. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) { #if __has_builtin(__builtin_nontemporal_store) @@ -8304,7 +7719,7 @@ FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) // Compute the bitwise NOT of a and then AND with a 128-bit vector containing // all 1's, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones FORCE_INLINE int _mm_test_all_ones(__m128i a) { return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == @@ -8313,7 +7728,7 @@ FORCE_INLINE int _mm_test_all_ones(__m128i a) // Compute the bitwise AND of 128 bits (representing integer data) in a and // mask, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) { int64x2_t a_and_mask = @@ -8326,27 +7741,34 @@ FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero +// Note: Argument names may be wrong in the Intel intrinsics guide. FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) { - uint64x2_t zf = - vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); - uint64x2_t cf = - vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); - uint64x2_t result = vandq_u64(zf, cf); - return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1)); + uint64x2_t v = vreinterpretq_u64_m128i(a); + uint64x2_t m = vreinterpretq_u64_m128i(mask); + + // find ones (set-bits) and zeros (clear-bits) under clip mask + uint64x2_t ones = vandq_u64(m, v); + uint64x2_t zeros = vbicq_u64(m, v); + + // If both 128-bit variables are populated (non-zero) then return 1. + // For comparison purposes, first compact each var down to 32-bits. + uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros)); + + // if folding minimum is non-zero then both vars must be non-zero + return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0); } // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the CF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) { int64x2_t s64 = - vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))), - vreinterpretq_s64_m128i(b)); + vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } @@ -8355,14 +7777,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the ZF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) { int64x2_t s64 = @@ -8372,10 +7794,10 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) /* SSE4.2 */ -const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = { +static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, }; -const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { +static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, }; @@ -8582,35 +8004,6 @@ const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ } -#if !defined(__aarch64__) -/* emulate vaddv u8 variant */ -static inline uint8_t vaddv_u8(uint8x8_t v8) -{ - const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); - return vget_lane_u8(vreinterpret_u8_u64(v1), 0); -} - -/* emulate vaddvq u8 variant */ -static inline uint8_t vaddvq_u8(uint8x16_t a) -{ - uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); - uint8_t res = 0; - for (int i = 0; i < 8; ++i) - res += tmp[i]; - return res; -} - -/* emulate vaddvq u16 variant */ -static inline uint16_t vaddvq_u16(uint16x8_t a) -{ - uint32x4_t m = vpaddlq_u16(a); - uint64x2_t n = vpaddlq_u32(m); - uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); - - return vget_lane_u32((uint32x2_t) o, 0); -} -#endif - static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) { int res = 0; @@ -8624,7 +8017,7 @@ static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); mtx[j] = vreinterpretq_m128i_u8( vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); - int tmp = vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; res |= (tmp << j); } return res; @@ -8641,14 +8034,17 @@ static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); mtx[j] = vreinterpretq_m128i_u16( vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); - int tmp = vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; res |= (tmp << j); } return res; } -#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(f_prefix) \ - f_prefix##IMPL(byte) f_prefix##IMPL(word) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) @@ -8667,7 +8063,7 @@ static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), vreinterpretq_u32_m128i(tmp)); -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) int t = vaddvq_u32(vec_res) ? 1 : 0; #else uint64x2_t sumh = vpaddlq_u32(vec_res); @@ -8695,7 +8091,7 @@ static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), vreinterpretq_u16_m128i(tmp)); - int t = vaddvq_u16(vec_res) ? 1 : 0; + int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; res |= (t << j); } return res; @@ -8704,11 +8100,13 @@ static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) #define SSE2NEON_CMP_RANGES_IS_BYTE 1 #define SSE2NEON_CMP_RANGES_IS_WORD 0 -#define SSE2NEON_GENERATE_CMP_RANGES(f_prefix) \ - f_prefix##IMPL(byte, uint, u, f_prefix##IS_BYTE) \ - f_prefix##IMPL(byte, int, s, f_prefix##IS_BYTE) \ - f_prefix##IMPL(word, uint, u, f_prefix##IS_WORD) \ - f_prefix##IMPL(word, int, s, f_prefix##IS_WORD) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ + prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ + prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ + prefix##IMPL(word, uint, u, prefix##IS_WORD) \ + prefix##IMPL(word, int, s, prefix##IS_WORD) +/* clang-format on */ SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) @@ -8739,7 +8137,7 @@ static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) res_lo = vand_u8(res_lo, vec_mask); res_hi = vand_u8(res_hi, vec_mask); - int res = vaddv_u8(res_lo) + (vaddv_u8(res_hi) << 8); + int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); return res; } @@ -8757,7 +8155,7 @@ static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); mtx = vbslq_u16(vec1, tmp, mtx); mtx = vandq_u16(mtx, vec_mask); - return vaddvq_u16(mtx); + return _sse2neon_vaddvq_u16(mtx); } #define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 @@ -8797,17 +8195,22 @@ static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) return res; \ } -#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(f_prefix) \ - f_prefix##IMPL(8, 16, f_prefix##IS_UBYTE) \ - f_prefix##IMPL(16, 8, f_prefix##IS_UWORD) +/* clang-format off */ +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ + prefix##IMPL(8, 16, prefix##IS_UBYTE) \ + prefix##IMPL(16, 8, prefix##IS_UWORD) +/* clang-format on */ SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD -#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(f_prefix) \ - f_prefix##IMPL(byte) f_prefix##IMPL(word) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) @@ -8841,7 +8244,7 @@ static cmpestr_func_t _sse2neon_cmpfunc_table[] = { #undef _ }; -static inline int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) { switch (imm8 & 0x30) { case _SIDD_NEGATIVE_POLARITY: @@ -8857,80 +8260,302 @@ static inline int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) return res & ((bound == 8) ? 0xFF : 0xFFFF); } +FORCE_INLINE int _sse2neon_clz(unsigned int x) +{ +#if defined(_MSC_VER) && !defined(__clang__) + unsigned long cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; + return 32; +#else + return x != 0 ? __builtin_clz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctz(unsigned int x) +{ +#if defined(_MSC_VER) && !defined(__clang__) + unsigned long cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; + return 32; +#else + return x != 0 ? __builtin_ctz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) +{ +#ifdef _MSC_VER + unsigned long cnt; +#if defined(SSE2NEON_HAS_BITSCAN64) + if (_BitScanForward64(&cnt, x)) + return (int) (cnt); +#else + if (_BitScanForward(&cnt, (unsigned long) (x))) + return (int) cnt; + if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) + return (int) (cnt + 32); +#endif /* SSE2NEON_HAS_BITSCAN64 */ + return 64; +#else /* assume GNU compatible compilers */ + return x != 0 ? __builtin_ctzll(x) : 64; +#endif +} + #define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) -#define SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) \ - int tmp1 = la ^ (la >> 31); \ - la = tmp1 - (la >> 31); \ - int tmp2 = lb ^ (lb >> 31); \ - lb = tmp2 - (lb >> 31); \ - la = SSE2NEON_MIN(la, bound); \ - lb = SSE2NEON_MIN(lb, bound); + +#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ + const int var = (imm & 0x01) ? 8 : 16 + +#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound) + +// Compare all pairs of character in string a and b, +// then aggregate the result. +// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the +// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of +// string a and b. +#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ + SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) + +#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ + return (r2 == 0) ? bound \ + : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ + : _sse2neon_ctz(r2)) + +#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + if (imm8 & 0x40) { \ + if (bound == 8) { \ + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ + vld1q_u16(_sse2neon_cmpestr_mask16b)); \ + dst = vreinterpretq_m128i_u16(vbslq_u16( \ + tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ + } else { \ + uint8x16_t vec_r2 = \ + vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ + uint8x16_t tmp = \ + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ + dst = vreinterpretq_m128i_u8( \ + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ + } \ + } else { \ + if (bound == 16) { \ + dst = vreinterpretq_m128i_u16( \ + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ + } else { \ + dst = vreinterpretq_m128i_u8( \ + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ + } \ + } \ + return dst // Compare packed strings in a and b with lengths la and lb using the control -// in imm8, and store the generated index in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestri -FORCE_INLINE int _mm_cmpestri(__m128i a, +// in imm8, and returns 1 if b did not contain a null character and the +// resulting mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra +FORCE_INLINE int _mm_cmpestra(__m128i a, int la, __m128i b, int lb, const int imm8) { - const int upper = (imm8 & 0x01) ? 8 : 16; + int lb_cpy = lb; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return !r2 & (lb_cpy > bound); +} - SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, upper) +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc +FORCE_INLINE int _mm_cmpestrc(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 != 0; +} - int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); - r2 = _sse2neon_sido_negative(r2, lb, imm8, upper); - return (r2 == 0) - ? upper - : ((imm8 & 0x40) ? (31 - __builtin_clz(r2)) : __builtin_ctz(r2)); +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri +FORCE_INLINE int _mm_cmpestri(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); } // Compare packed strings in a and b with lengths la and lb using the control // in imm8, and store the generated mask in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestrm +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm FORCE_INLINE __m128i _mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) { - const int bound = (imm8 & 0x01) ? 8 : 16; - - SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) - - int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); - r2 = _sse2neon_sido_negative(r2, lb, imm8, bound); - - __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); - if (imm8 & 0x40) { - if (bound == 8) { - uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), - vld1q_u16(_sse2neon_cmpestr_mask16b)); - dst = vreinterpretq_m128i_u16( - vbslq_u16(tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); - } else { - uint8x16_t vec_r2 = vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); - uint8x16_t tmp = - vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); - dst = vreinterpretq_m128i_u8( - vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); - } - } else { - if (bound == 16) { - dst = vreinterpretq_m128i_u16( - vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); - } else { - dst = vreinterpretq_m128i_u8( - vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); - } - } + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} - return dst; +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro +FORCE_INLINE int _mm_cmpestro(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 & 1; +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs +FORCE_INLINE int _mm_cmpestrs(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + (void) a; + (void) b; + (void) lb; + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return la <= (bound - 1); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz +FORCE_INLINE int _mm_cmpestrz(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + (void) a; + (void) b; + (void) la; + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return lb <= (bound - 1); +} + +#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ + do { \ + if (imm8 & 0x01) { \ + uint16x8_t equal_mask_##str = \ + vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 3; \ + } else { \ + uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ + vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 2; \ + } \ + } while (0) + +#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ + int la, lb; \ + do { \ + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ + } while (0) + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if b did not contain a null character and the resulting +// mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra +FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return !r2 & (lb >= bound); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc +FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 != 0; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri +FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm +FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro +FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 & 1; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs +FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) +{ + (void) b; + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int la; + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); + return la <= (bound - 1); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz +FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) +{ + (void) a; + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int lb; + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); + return lb <= (bound - 1); } // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers // in b for greater than. FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) return vreinterpretq_m128i_u64( vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); #else @@ -8941,15 +8566,16 @@ FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 16-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100) +// unsigned 16-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16 FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); -#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) +#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ + (defined(_M_ARM64) && !defined(__clang__)) crc = __crc32ch(crc, v); #else crc = _mm_crc32_u8(crc, v & 0xff); @@ -8959,15 +8585,16 @@ FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 32-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100) +// unsigned 32-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32 FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); -#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) +#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ + (defined(_M_ARM64) && !defined(__clang__)) crc = __crc32cw(crc, v); #else crc = _mm_crc32_u16(crc, v & 0xffff); @@ -8977,14 +8604,16 @@ FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 64-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100) +// unsigned 64-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64 FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (defined(_M_ARM64) && !defined(__clang__)) + crc = __crc32cd((uint32_t) crc, v); #else crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); @@ -8993,33 +8622,69 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 8-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100) +// unsigned 8-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8 FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); -#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) +#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ + (defined(_M_ARM64) && !defined(__clang__)) crc = __crc32cb(crc, v); #else crc ^= v; - for (int bit = 0; bit < 8; bit++) { - if (crc & 1) - crc = (crc >> 1) ^ UINT32_C(0x82f63b78); - else - crc = (crc >> 1); - } +#if defined(__ARM_FEATURE_CRYPTO) + // Adapted from: https://mary.rs/lab/crc32/ + // Barrent reduction + uint64x2_t orig = + vcombine_u64(vcreate_u64((uint64_t) (crc) << 24), vcreate_u64(0x0)); + uint64x2_t tmp = orig; + + // Polynomial P(x) of CRC32C + uint64_t p = 0x105EC76F1; + // Barrett Reduction (in bit-reflected form) constant mu_{64} = \lfloor + // 2^{64} / P(x) \rfloor = 0x11f91caf6 + uint64_t mu = 0x1dea713f1; + + // Multiply by mu_{64} + tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(mu)); + // Divide by 2^{64} (mask away the unnecessary bits) + tmp = + vandq_u64(tmp, vcombine_u64(vcreate_u64(0xFFFFFFFF), vcreate_u64(0x0))); + // Multiply by P(x) (shifted left by 1 for alignment reasons) + tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(p)); + // Subtract original from result + tmp = veorq_u64(tmp, orig); + + // Extract the 'lower' (in bit-reflected sense) 32 bits + crc = vgetq_lane_u32(vreinterpretq_u32_u64(tmp), 1); +#else // Fall back to the generic table lookup approach + // Adapted from: https://create.stephan-brumme.com/crc32/ + // Apply half-byte comparison algorithm for the best ratio between + // performance and lookup table. + + // The lookup table just needs to store every 16th entry + // of the standard look-up table. + static const uint32_t crc32_half_byte_tbl[] = { + 0x00000000, 0x105ec76f, 0x20bd8ede, 0x30e349b1, 0x417b1dbc, 0x5125dad3, + 0x61c69362, 0x7198540d, 0x82f63b78, 0x92a8fc17, 0xa24bb5a6, 0xb21572c9, + 0xc38d26c4, 0xd3d3e1ab, 0xe330a81a, 0xf36e6f75, + }; + + crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; + crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; +#endif #endif return crc; } /* AES */ -#if !defined(__ARM_FEATURE_CRYPTO) +#if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__)) /* clang-format off */ -#define SSE2NEON_AES_DATA(w) \ +#define SSE2NEON_AES_SBOX(w) \ { \ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ @@ -9059,53 +8724,114 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ w(0xb0), w(0x54), w(0xbb), w(0x16) \ } +#define SSE2NEON_AES_RSBOX(w) \ + { \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ + w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ + w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ + w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ + w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ + w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ + w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ + w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ + w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ + w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ + w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ + w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ + w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ + w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ + w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ + w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ + w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ + w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ + w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ + w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ + w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ + w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ + w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ + w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ + w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ + w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ + w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ + w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ + w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ + w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ + w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ + w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ + w(0x55), w(0x21), w(0x0c), w(0x7d) \ + } /* clang-format on */ /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ #define SSE2NEON_AES_H0(x) (x) -static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); #undef SSE2NEON_AES_H0 -// In the absence of crypto extensions, implement aesenc using regular neon +/* x_time function and matrix multiply function */ +#if !defined(__aarch64__) && !defined(_M_ARM64) +#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) +#define SSE2NEON_MULTIPLY(x, y) \ + (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ + ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ + ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ + ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) +#endif + +// In the absence of crypto extensions, implement aesenc using regular NEON // intrinsics instead. See: // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and -// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 -// for more information Reproduced with permission of the author. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) +// for more information. +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) { -#if defined(__aarch64__) - static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, - 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, - 0xc, 0x1, 0x6, 0xb}; - static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc}; +#if defined(__aarch64__) || defined(_M_ARM64) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(EncBlock); + uint8x16_t w = vreinterpretq_u8_m128i(a); - // shift rows + /* shift rows */ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - // sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0); - - // mix columns + /* sub bytes */ + // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and + // look up each of the table. After each lookup, we load the next table + // which locates at the next 64-bytes. In the meantime, the index in the + // table would be smaller than it was, so the index parameters of + // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + /* mix columns */ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - // add round key + /* add round key */ return vreinterpretq_m128i_u8(w) ^ RoundKey; -#else /* ARMv7-A NEON implementation */ +#else /* ARMv7-A implementation for a table-based AES */ #define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ ((uint32_t) (b1) << 8) | (uint32_t) (b0)) +// multiplying 'x' by 2 in GF(2^8) #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) +// multiplying 'x' by 3 in GF(2^8) #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) #define SSE2NEON_AES_U0(p) \ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) @@ -9115,11 +8841,14 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) #define SSE2NEON_AES_U3(p) \ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) + + // this generates a table containing every possible permutation of + // shift_rows() and sub_bytes() with mix_columns(). static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { - SSE2NEON_AES_DATA(SSE2NEON_AES_U0), - SSE2NEON_AES_DATA(SSE2NEON_AES_U1), - SSE2NEON_AES_DATA(SSE2NEON_AES_U2), - SSE2NEON_AES_DATA(SSE2NEON_AES_U3), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), }; #undef SSE2NEON_AES_B2W #undef SSE2NEON_AES_F2 @@ -9129,11 +8858,15 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #undef SSE2NEON_AES_U2 #undef SSE2NEON_AES_U3 - uint32_t x0 = _mm_cvtsi128_si32(EncBlock); - uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55)); - uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA)); - uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF)); + uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] + uint32_t x1 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] + uint32_t x2 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] + uint32_t x3 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] + // finish the modulo addition step in mix_columns() __m128i out = _mm_set_epi32( (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), @@ -9148,54 +8881,254 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #endif } +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // inverse mix columns + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & + 0x1b); // multiplying 'v' by 2 in GF(2^8) + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + // add round key + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t i, e, f, g, h, v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + // inverse mix columns + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + // Perform the last round of an AES encryption flow on data (state) in a using // the round key in RoundKey, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // shift rows + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + // sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A implementation */ + uint8_t v[16] = { + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], + }; + + return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ /* FIXME: optimized for NEON */ - uint8_t v[4][4] = { - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, + uint8_t v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (int i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ +#if defined(__aarch64__) + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, }; - for (int i = 0; i < 16; i++) - vreinterpretq_nth_u8_m128i(a, i) = - v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i); - return a; + uint8x16_t v = vreinterpretq_u8_m128i(a); + uint8x16_t w; + + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + // multiplying 'v' by 2 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + return vreinterpretq_m128i_u8(w); + +#else /* ARMv7-A NEON implementation */ + uint8_t i, e, f, g, h, v[4][4]; + vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); +#endif } +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +// // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. // This instruction generates a round key for AES encryption. See // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ // for details. -// -// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon) +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { - uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55)); - uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF)); +#if defined(__aarch64__) + uint8x16_t _a = vreinterpretq_u8_m128i(a); + uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); + + uint32x4_t v_u32 = vreinterpretq_u32_u8(v); + uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24)); + uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon)); + + return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v)); + +#else /* ARMv7-A NEON implementation */ + uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); + uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); for (int i = 0; i < 4; ++i) { - ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]]; - ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]]; + ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; + ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; } return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); +#endif } -#undef SSE2NEON_AES_DATA +#undef SSE2NEON_AES_SBOX +#undef SSE2NEON_AES_RSBOX + +#if defined(__aarch64__) +#undef SSE2NEON_XT +#undef SSE2NEON_MULTIPLY +#endif #else /* __ARM_FEATURE_CRYPTO */ // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and @@ -9206,12 +9139,24 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon) // for more details. FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) { - return vreinterpretq_m128i_u8( - vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^ - vreinterpretq_u8_m128i(b)); + return vreinterpretq_m128i_u8(veorq_u8( + vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(b))); +} + +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8(veorq_u8( + vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(RoundKey))); } -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( @@ -9219,11 +9164,33 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) RoundKey); } +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8( + veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)), + vreinterpretq_u8_m128i(RoundKey))); +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ + return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a))); +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst." +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { // AESE does ShiftRows and SubBytes on A uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)); +#if !defined(_MSC_VER) || defined(__clang__) uint8x16_t dest = { // Undo ShiftRows step from AESE and extract X1 and X3 u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1) @@ -9233,6 +9200,33 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) }; uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon}; return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r); +#else + // We have to do this hack because MSVC is strictly adhering to the CPP + // standard, in particular C++03 8.5.1 sub-section 15, which states that + // unions must be initialized by their first member type. + + // As per the Windows ARM64 ABI, it is always little endian, so this works + __n128 dest{ + ((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) | + ((uint64_t) u8.n128_u8[0xE] << 16) | + ((uint64_t) u8.n128_u8[0xB] << 24) | + ((uint64_t) u8.n128_u8[0x1] << 32) | + ((uint64_t) u8.n128_u8[0xE] << 40) | + ((uint64_t) u8.n128_u8[0xB] << 48) | + ((uint64_t) u8.n128_u8[0x4] << 56), + ((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) | + ((uint64_t) u8.n128_u8[0x6] << 16) | + ((uint64_t) u8.n128_u8[0x3] << 24) | + ((uint64_t) u8.n128_u8[0x9] << 32) | + ((uint64_t) u8.n128_u8[0x6] << 40) | + ((uint64_t) u8.n128_u8[0x3] << 48) | + ((uint64_t) u8.n128_u8[0xC] << 56)}; + + dest.n128_u32[1] = dest.n128_u32[1] ^ rcon; + dest.n128_u32[3] = dest.n128_u32[3] ^ rcon; + + return dest; +#endif } #endif @@ -9240,7 +9234,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) // Perform a carry-less multiplication of two 64-bit integers, selected from a // and b according to imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) { uint64x2_t a = vreinterpretq_u64_m128i(_a); @@ -9263,19 +9257,19 @@ FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) } } -FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() +FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void) { union { fpcr_bitfield field; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint64_t value; #else uint32_t value; #endif } r; -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#if defined(__aarch64__) || defined(_M_ARM64) + r.value = _sse2neon_get_fpcr(); #else __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif @@ -9285,12 +9279,14 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() // Count the number of bits set to 1 in unsigned 32-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) #if __has_builtin(__builtin_popcount) return __builtin_popcount(a); +#elif defined(_MSC_VER) + return _CountOneBits(a); #else return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); #endif @@ -9312,12 +9308,14 @@ FORCE_INLINE int _mm_popcnt_u32(unsigned int a) // Count the number of bits set to 1 in unsigned 64-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) #if __has_builtin(__builtin_popcountll) return __builtin_popcountll(a); +#elif defined(_MSC_VER) + return _CountOneBits64(a); #else return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); #endif @@ -9344,34 +9342,33 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) // regardless of the value of the FZ bit. union { fpcr_bitfield field; -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint64_t value; #else uint32_t value; #endif } r; -#if defined(__aarch64__) - __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#if defined(__aarch64__) || defined(_M_ARM64) + r.value = _sse2neon_get_fpcr(); #else __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; -#if defined(__aarch64__) - __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#if defined(__aarch64__) || defined(_M_ARM64) + _sse2neon_set_fpcr(r.value); #else - __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } // Return the current 64-bit value of the processor's time-stamp counter. // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc - FORCE_INLINE uint64_t _rdtsc(void) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(_M_ARM64) uint64_t val; /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the @@ -9380,7 +9377,11 @@ FORCE_INLINE uint64_t _rdtsc(void) * bits wide and it is attributed with the flag 'cap_user_time_short' * is true. */ +#if defined(_MSC_VER) && !defined(__clang__) + val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2)); +#else __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); +#endif return val; #else