-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcal.py
executable file
·258 lines (228 loc) · 10.4 KB
/
cal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/bin/python3
"""
I/O calibration utility for EURORACK-PMOD
Calibration process:
1. Compile gateware and program FPGA with these defines in `top.sv`:
- OUTPUT_CALIBRATION
2. Connect +/- 5V source to all INPUTS
3. Run `sudo ./cal.py`
4. Supply 5V, wait for values to settle, hold 'p' to capture
5. Supply -5V, wait for values to settle, hold 'n' to capture
6. At this point you can try other voltages to make sure the calibration is good
by looking at the 'back-calculated' values using the generated calibration.
7. Press 'o' to switch to OUTPUT calibration.
8. Loop back all outputs to inputs (1->1, 2->2, ...)
9. Wait for values to settle, hold 'p' to capture
10. Hold uButton, wait for values to settle, hold 'n' to capture
(the uButton switches between the output emitting uncalibrated +/- 5V signals)
11. The (calibrated) inputs are used to figure out the calibration constants for
the (uncalibrated) outputs.
12. Press 'x', copy the calibration string to the cal hex file.
13. Be careful to switch back off the `OUTPUT_CALIBRATION` define :)
Note: if you check the output calibration with a multimeter, make sure
to add a 100K load unless you calibrate with the CAL_OPEN_LOAD option below.
"""
import argparse
import serial
import sys
import os
import time
import numpy as np
import keyboard
from dataclasses import dataclass, field, fields, MISSING
@dataclass
class CalibrationArguments:
"""Command-line arguments for eurorack-pmod calibration."""
serial_port: str = field(
default="",
metadata={'help': 'Serial port to use for calibration e.g., /dev/ttyUSBX'})
serial_baud: int = field(
default=1000000,
metadata={'help': 'Baud rate for serial communication set in top.sv // debug_uart instance.'})
n_channels: int = field(
default=4,
metadata={'help': 'Total number of input channels.'})
wbits: int = field(
default=16,
metadata={'help': 'Bits per sample actually being used in the design (top.sv).'})
uart_wbits: int = field(
default=32,
metadata={'help': 'Maximum bits per sample in sample stream from debug_uart.sv.'})
cal_open_load: bool = field(
default=True,
metadata={'help': 'Calibrate outputs for an open load. Set to False if driving a 100K input impedance.'})
count_per_volt: int = field(
default=4000,
metadata={'help': 'Input calibration is aiming for N counts per volt.'})
mp_n_bits: int = field(
default=10,
metadata={'help': 'Number of bits in multiply constant for input calibration.'})
class TwosComplement:
@staticmethod
def _bits_not(n, width):
"""Bitwise NOT from positive integer of `width` bits."""
return (1 << width) - 1 - n
@staticmethod
def from_signed(n, width):
"""Bits (2s complement) of `width` from signed integer."""
return n if n >= 0 else TwosComplement._bits_not(-n, width) + 1
@staticmethod
def to_signed(n, width):
"""Signed integer from (2s complement) bits of `width`."""
if (1 << (width - 1) & n) > 0:
return -int(TwosComplement._bits_not(n, width) + 1)
else:
return n
class CalibrationTool:
def __init__(self, args):
self.args = args
self.ser = serial.Serial(args.serial_port, args.serial_baud)
self.adc_avg = np.zeros(4)
self.p5v_adc_avg = np.zeros(4)
self.n5v_adc_avg = np.zeros(4)
self.p5v_dac_fb_avg = np.zeros(4)
self.n5v_dac_fb_avg = np.zeros(4)
self.adc_calibrated_avg = np.zeros(4)
self.input_cal = True
self.input_cal_string = None
self.output_cal_string = None
assert self.args.wbits % 8 == 0
assert self.args.uart_wbits % 8 == 0
def run_calibration(self):
while True:
self._clear_screen()
self._print_header()
raw = self._flush_and_read_serial()
values = {
"magic1": raw[0],
"magic2": raw[1],
"eeprom_mfg": raw[2],
"eeprom_dev": raw[3],
"eeprom_serial": int.from_bytes(raw[4:8], "big"),
"jack": raw[8],
"touch0": raw[9],
"touch1": raw[10],
"touch2": raw[11],
"touch3": raw[12],
"touch4": raw[13],
"touch5": raw[14],
"touch6": raw[15],
"touch7": raw[16],
}
[print(k, hex(v)) for k, v in values.items()]
self._decode_raw_samples(raw[17:])
self._handle_user_input()
self._calculate_calibration_strings()
time.sleep(0.1)
def _clear_screen(self):
os.system('clear')
def _print_header(self):
print("*** eurorack-pmod calibration / bringup tool ***")
print()
print("INPUT" if self.input_cal else "OUTPUT", "calibration")
print("press 'o' to switch to OUTPUT once inputs are done")
print()
def _flush_and_read_serial(self):
"""Flush serial input and read values."""
self.ser.flushInput()
raw = self.ser.read(100)
return raw[raw.find(b'\xbe\xef'):]
def _decode_raw_samples(self, raw):
"""Decode raw samples and average them."""
print("\nRaw ADC samples:")
# Low-pass smoothing constant
alpha = 0.3
for ix in range(self.args.n_channels):
bytes_start_index = ix * 4
value = int.from_bytes(raw[bytes_start_index:bytes_start_index + 4], 'big')
value_tc = TwosComplement.to_signed(value, self.args.uart_wbits)
# Update smoothed averages
self.adc_avg[ix] = alpha * value_tc + (1 - alpha) * self.adc_avg[ix]
print(ix, hex(value), value_tc, int(self.adc_avg[ix]))
def _handle_user_input(self):
"""Handle keyboard input to adjust calibration settings."""
if keyboard.is_pressed('o'):
self.input_cal = False
if keyboard.is_pressed('p'):
if self.input_cal:
self.p5v_adc_avg = np.copy(self.adc_avg)
else:
self.p5v_dac_fb_avg = np.copy(self.adc_calibrated_avg)
if keyboard.is_pressed('n'):
if self.input_cal:
self.n5v_adc_avg = np.copy(self.adc_avg)
else:
self.n5v_dac_fb_avg = np.copy(self.adc_calibrated_avg)
if keyboard.is_pressed('x'):
sys.exit(0) # Exit the program
def _calculate_calibration_strings(self):
print()
print("Step 1) INPUT CAL - inject calibration signal")
print("Raw ADC [Inputs set to +5V]:", self.p5v_adc_avg)
print("Raw ADC [Inputs set to -5V]:", self.n5v_adc_avg)
print()
print("Step 2) OUTPUT CAL - loop back all outputs to inputs")
print("Raw ADC [DACs @ uncal +5V, loopback]:", self.p5v_dac_fb_avg)
print("Raw ADC [DACs @ uncal -5V, loopback]:", self.n5v_dac_fb_avg)
print()
if self.input_cal_string is not None:
print("Average raw ADC counts converted to voltages using current input calibration")
cal_mem = [int(x, 16) for x in self.input_cal_string.strip().split(' ')[1:]]
for channel in range(self.args.n_channels):
calibrated = ((-self.adc_avg[channel] - TwosComplement.to_signed(cal_mem[channel*2], self.args.wbits)) *
TwosComplement.to_signed(cal_mem[channel*2 + 1], self.args.wbits)) / (1 << self.args.mp_n_bits)
self.adc_calibrated_avg[channel] = calibrated
print(f"in{channel}",round(calibrated / self.args.count_per_volt, ndigits=3), "V")
shift_constant = None
mp_constant = None
if self.input_cal:
shift_constant = -(self.n5v_adc_avg + self.p5v_adc_avg)/2.
mp_constant = 2**self.args.mp_n_bits * self.args.count_per_volt * 10./(self.n5v_adc_avg-self.p5v_adc_avg)
else:
range_constant = (self.p5v_dac_fb_avg - self.n5v_dac_fb_avg) / (self.args.count_per_volt * 10.)
if self.args.cal_open_load:
# Tweak range constant to remove effect of 100K load impedance.
# (in all cases it is assumed the device is connected in loopback
# mode, all this does is tweak the args emitted)
range_constant = range_constant * (101./100.)
mp_constant = 2**self.args.mp_n_bits / range_constant
shift_constant = (self.n5v_dac_fb_avg + self.p5v_dac_fb_avg)/2.
shift_constant = shift_constant * range_constant
def conv(constant):
return hex(TwosComplement.from_signed(int(constant), self.args.wbits)).replace('0x','')
print()
print("CALIBRATION MEMORY ('x' to exit, copy this to 'cal_mem.hex')\n")
cal_string = None
if np.isfinite(shift_constant).all() and np.isfinite(mp_constant).all():
cal_string = f"@0000000{0 if self.input_cal else int(self.args.n_channels*(self.args.wbits/8)):x} "
for i in range(4):
cal_string = cal_string + conv(shift_constant[i]) + ' '
cal_string = cal_string + conv(mp_constant[i]) + ' '
if self.input_cal:
self.input_cal_string = cal_string
else:
self.output_cal_string = cal_string
print("// Input calibration constants")
print(self.input_cal_string)
print("// Output calibration constants")
print(self.output_cal_string)
def parse_args_with_defaults(defaults):
parser = argparse.ArgumentParser(description='Calibration tool arguments.')
# Use the default values from the dataclass for the command line arguments
for field in fields(defaults):
parser.add_argument(
f'--{field.name.replace("_", "-")}',
type=type(getattr(defaults, field.name)),
default=getattr(defaults, field.name),
help=field.metadata.get("help", "")
)
return parser.parse_args()
if __name__ == "__main__":
args = CalibrationArguments()
args = parse_args_with_defaults(args)
if args.serial_port == "":
print("Nominal usage: ./cal.py --serial-port /dev/ttyUSBX --serial-baud 1000000")
print("Warn: most boards are 1MBaud, check their Makefile to be sure!")
sys.exit(0) # Exit the program
calibration_tool = CalibrationTool(args)
calibration_tool.run_calibration()