-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorchtools.py
50 lines (45 loc) · 1.92 KB
/
pytorchtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, name):
score = -val_loss
# delta = 0
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, name)
elif score < self.best_score:
# elif score < self.best_score - delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, name)
self.counter = 0
def save_checkpoint(self, val_loss, model, name):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.module.state_dict(), name)
# torch.save(model.state_dict(), name)
self.val_loss_min = val_loss