forked from browser-use/browser-use
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbedrock_claude.py
59 lines (42 loc) · 1.53 KB
/
bedrock_claude.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Automated news analysis and sentiment scoring using Bedrock.
@dev Ensure AWS environment variables are set correctly for Bedrock access.
"""
import os
import sys
from langchain_aws import ChatBedrock
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import argparse
import asyncio
from browser_use import Agent
from browser_use.browser.browser import Browser, BrowserConfig
from browser_use.controller.service import Controller
def get_llm():
return ChatBedrock(
model_id="us.anthropic.claude-3-5-sonnet-20241022-v2:0",
temperature=0.0,
max_tokens=None,
)
# Define the task for the agent
task = (
"Visit cnn.com, navigate to the 'World News' section, and identify the latest headline. "
"Open the first article and summarize its content in 3-4 sentences. "
"Additionally, analyze the sentiment of the article (positive, neutral, or negative) "
"and provide a confidence score for the sentiment. Present the result in a tabular format."
)
parser = argparse.ArgumentParser()
parser.add_argument('--query', type=str, help='The query for the agent to execute', default=task)
args = parser.parse_args()
llm = get_llm()
browser = Browser(
config=BrowserConfig(
# chrome_instance_path='/Applications/Google Chrome.app/Contents/MacOS/Google Chrome',
)
)
agent = Agent(
task=args.query, llm=llm, controller=Controller(), browser=browser, validate_output=True,
)
async def main():
await agent.run(max_steps=30)
await browser.close()
asyncio.run(main())