-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGD.m
65 lines (54 loc) · 1.71 KB
/
GD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function [x, i, losses, norms] = GD(Problem, x0, fstar, eps, lr, m1, tau, MaxIter, color, style, verbose)
%function [x] = GD(p, x0, eps, t, MaxIter)
% Apply the Steepest Gradient Descent algorithm.
losses = []; norms = [];
A = Problem.A;
b = Problem.b;
m = Problem.m;
n = Problem.n;
f = Problem.cost;
grad_f = Problem.grad;
grad2_f = Problem.grad2;
x = x0; % starting point
h = grad2_f(); % hessian
L = max(abs(eig(h)));
if Problem.name == "quadratic"
Problem.plot_surface();
end
i = 0;
if verbose == 1
fprintf( '---Gradient Descent method\n');
end
while true
v = f(x); % value of the function at x
g = grad_f(x); % gradient at x
ng = norm(g); % norm of the gradient
% relative_error = (v - fstar)/abs(fstar);
absolute_error = (v - fstar);
if absolute_error <= eps || i == MaxIter
break;
else
i = i + 1;
end
losses(end+1) = v;
norms(end+1) = ng;
if Problem.name == "quadratic"
den = g'*A*g;
lr = ng^2 / den; % stepsize
x_old = x;
x = x - lr*g;
Problem.plot_line(x_old, x, color, style);
if verbose == 1
fprintf('%4d\t v=%1.8e \t ng=%1.4e\n' , i, v, ng);
end
else
% [as, lsiters] = BacktrackingLS(f, grad_f, x, lr, m1, tau, 1000);
% x = x - as*g;
%x = x - lr*g;
x = x - (1/L)*g;
if verbose == 1
fprintf('%4d\t v=%1.8e \t ng=%1.4e \t lr=%e \n' , i, v, ng, lr);
end
end
end
end