-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmoses_scaling.m
301 lines (266 loc) · 8.95 KB
/
moses_scaling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
function [] = moses_scaling(n_arr, r_arr, bmul_arr, T, alpha, trials)
%MOSES_SCALING MOSES_fast scaling experiment for different n, r, blk
%permutations.
%
% Author: Andreas Grammenos ([email protected])
%
% Last touched date: 30/12/2018
%
% License: GPLv3
%
%% Initialise
% scope in global variables
global run_full_scaling
global run_exp1
global run_exp2
global run_exp3
% check if we have T
if nargin < 4
T = 3000; % default T
end
% check if we have alpha
if nargin < 5
alpha = 1; % default alpha
end
% check if we have a trials value
if nargin < 6
trials = 10;
end
%% Generic run for all tuples
% Run for all parameter tuples, in this instance we define a parameter
% tuple as p = (n, r, b) and each of the graphs are generated by fixing two
% parameters for any given plot while the third one changes.
if run_full_scaling == 1
fprintf("\n ** Running generic scaling experiment **\n\n");
% print the configuration parameters in a nice way
fprintf("\n -- Provided Configuration Parameters\n");
fprintf("\n\t T: %d, alpha %d", T, alpha);
fprintf("\n\t Ambient dimensions: %s", num2str(n_arr));
fprintf("\n\t Target ranks: %s", num2str(r_arr));
fprintf("\n\t Block size multipliers: %s\n", num2str(bmul_arr));
% preallocate fro_err
fro_err = zeros(size(n_arr, 2), size(r_arr, 2), size(bmul_arr, 2));
% run for all permutations -- EXPENSIVE!
for i = 1:size(n_arr, 2)
[Y, ~, ~] = synthetic_data_gen(n_arr(i), T, 1, alpha);
for j = 1:size(r_arr, 2)
fprintf("\n !! Running for n=%d, T=%dk, r=%d\n", ...
n_arr(i), T/1000, r_arr(j));
fig = figure;
hold on
for k = 1:size(bmul_arr, 2)
blk = bmul_arr(k)*r_arr(j);
[mft, m_err, ~, ~, ~, Yr_mof, ~] = moses_fast(Y, r_arr(j), blk);
% check if we need to pad due to block misalignment
min_pad = size(Yr_mof, 2);
% calculate the final error
fro_err(i, j, k) = n_arr(i)*immse(Y(:, 1:min_pad), Yr_mof);
% plot the error
plot(mft, m_err, 'LineWidth', 2);
end
% construct the title
cap = sprintf("moses_f error n=%d, r=%d", n_arr(i), r_arr(j));
% assign the title
title(cap);
% construct the legends
leg = cellstr(num2str(bmul_arr', 'b=%-dr'));
% assign the legends
legend(leg);
hold off
% now print
t = sprintf("moses_scaling_fro_over_t_error_n_%s_T_%sk_r_%s", ...
num2str(n_arr(i)), strrep(num2str(T/1000), ".", "_"), ...
num2str(r_arr(j)));
print_fig(fig, t);
end
fprintf("\n ** Finished running generic scaling experiment **\n");
end
else
fprintf("\n ** Skipping running generic scaling experiment **\n");
end
%% Experiment one (r = 15, b = 2r for all n_arr)
if run_exp1 == 1
fprintf("\n ** Running experiment 1 (fixed r, b -- variable n)\n");
r = 15; % r-recovery
m_err_a = zeros(1, size(n_arr, 2)); % holds the final errors
fig = figure;
hold on;
for i = 1:size(n_arr, 2)
fprintf("\n !! Running for n=%d\n", n_arr(i));
for j = 1:trials
fprintf("\n !! Trial %d out of %d\n", j, trials);
[Y, ~, ~] = synthetic_data_gen(n_arr(i), T, 1, alpha);
[mft, m_err, ~, ~, ~, ~, ~] = moses_fast(Y, r);
if j == 1
% plot the error
plot(mft, m_err, 'LineWidth', 2);
end
% find the last non-NaN location of the error array
l_idc = find(sum(~isnan(m_err),1) > 0, 1 , 'last');
% append the final error we have on record
m_err_a(i) = m_err(l_idc);
end
end
hold off;
% construct the title
cap = sprintf("MOSES fixed b=2r, r=%d variable n", r);
% assign the title
title(cap);
% construct the legends
leg = cellstr(num2str(n_arr', 'n=%-d'));
% assign the legends
legend(leg);
% assign axis labels
ylabel("error"); xlabel("samples");
hold off
% now print
t = sprintf("moses_scaling_exp1_fro_over_t_error_fixed_n_r_var_n_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
% now plot the final error by itself
fig = figure;
plot(m_err_a./trials, '-*', 'LineWidth', 2);
% construct the title
cap = sprintf("MOSES fixed b=2r, r=%d variable n final error", r);
title(cap);
% put the correct axis labels
xlabel("ambient dimension (n)"); ylabel("error");
% set the correct x-axis ticks as well as their labels
xticks(1:1:size(n_arr, 2));
xticklabels(num2cell(n_arr));
% increase the font size of the figure
set(gca,'fontsize', 18);
% now print
t = sprintf("moses_scaling_exp1_final_error_fixed_n_r_var_n_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
fprintf("\n ** Finished running experiment 1\n");
else
fprintf("\n ** Skipping running experiment 1\n");
end
%% Experiment two (r = 15, n = max(n_arr), variable b)
if run_exp2 == 1
fprintf("\n ** Running experiment 2 (fixed r, n -- variable b)\n");
r = 15; % r-recovery
n = max(n_arr); % ambient dim
m_err_a = zeros(1, size(bmul_arr, 2)); % holds the final errors
fig = figure;
hold on;
for i = 1:size(bmul_arr, 2)
fprintf("\n !! Running for b=%dr\n", bmul_arr(i));
for j = 1:trials
fprintf("\n\t ** Trial %d out of %d\n", j, trials);
[Y, ~, ~] = synthetic_data_gen(n, T, 1, alpha);
[mft, m_err, ~, ~, ~, ~, ~] = moses_fast(Y, r, bmul_arr(i)*r);
% plot the error
if j == 1
plot(mft, m_err, 'LineWidth', 2);
end
% find the last non-NaN location of the error array
l_idc = find(sum(~isnan(m_err),1) > 0, 1 , 'last');
% append the final error we have on record
m_err_a(i) = m_err_a(i) + m_err(l_idc);
end
end
hold off;
% construct the title
cap = sprintf("MOSES fixed n=%d, r=%d variable b", n, r);
% assign the title
title(cap);
% construct the legends
leg = cellstr(num2str(bmul_arr', 'b=%-dr'));
% assign the legends
legend(leg);
% set the legends
xlabel('samples'); ylabel('error');
hold off
% now print
t = sprintf("moses_scaling_exp2_fro_over_t_error_fixed_n_r_var_b_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
% now plot the final error by itself
fig = figure;
plot(m_err_a./trials, '-*', 'LineWidth', 2);
% construct the title
cap = sprintf("MOSES fixed n=%d, r=%d variable b final error", n, r);
title(cap);
% put the correct axis labels
xlabel("block size (b)"); ylabel("error");
% set the correct x-axis ticks as well as their labels
xticks(1:2:size(bmul_arr, 2));
ticks = num2str(bmul_arr(3:2:end)', '%-dr');
ftick = blanks(size(ticks, 2));
ftick(end) = 'r';
ticks = [ftick; ticks];
xticklabels(cellstr(ticks));
xlim([1, size(bmul_arr, 2)]);
% increase the font size of the figure
set(gca,'fontsize', 18);
% now print
t = sprintf("moses_scaling_exp2_final_error_fixed_n_r_var_b_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
fprintf("\n ** Finished running experiment 2\n");
else
fprintf("\n ** Skipping running experiment 2\n");
end
%% Experiment three (n = max(n_arr), b = 2r, variable r)
if run_exp3 == 1
fprintf("\n ** Running experiment 3 (fixed n, b -- variable r)\n");
n = max(n_arr); % ambient dim
m_err_a = zeros(1, size(r_arr, 2)); % holds the final errors
fig = figure;
hold on;
for i = 1:size(r_arr, 2)
fprintf("\n !! Running for r=%d\n", r_arr(i));
for j = 1:trials
fprintf("\n !! Trial %d out of %d\n", j, trials);
[Y, ~, ~] = synthetic_data_gen(n, T, 1, alpha);
[mft, m_err, ~, ~, ~, ~, ~] = moses_fast(Y, r_arr(i));
if j == 1
% plot the error
plot(mft, m_err, 'LineWidth', 2);
end
% find the last non-NaN location of the error array
l_idc = find(sum(~isnan(m_err),1) > 0, 1 , 'last');
% append the final error we have on record
m_err_a(i) = m_err(l_idc);
end
end
hold off;
% construct the title
cap = sprintf("MOSES fixed n=%d, b=2r variable r", n);
% assign the title
title(cap);
% construct the legends
leg = cellstr(num2str(r_arr', 'r=%-d'));
% assign the legends
legend(leg);
% set the legends
xlabel('samples'); ylabel('error');
hold off
% now print
t = sprintf("moses_scaling_exp3_fro_over_t_error_fixed_n_b_var_r_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
% now plot the final error by itself
fig = figure;
plot(m_err_a./trials, '-*', 'LineWidth', 2);
% construct the title
cap = sprintf("MOSES fixed n=%d, b=2r variable r final error", n);
title(cap);
% put the correct axis labels
xlabel("rank (r)"); ylabel("error");
% set the correct x-axis ticks as well as their labels
xticks(1:1:size(r_arr, 2));
xticklabels(num2cell(r_arr));
% increase the font size of the figure
set(gca,'fontsize', 18);
% now print
t = sprintf("moses_scaling_exp3_final_error_fixed_n_b_var_r_T_%sk", ...
strrep(num2str(T/1000), ".", "_"));
print_fig(fig, t);
fprintf("\n ** Finished running experiment 3\n");
else
fprintf("\n ** Skipped running experiment 3\n");
end