We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Here is a piece of code that creates a siamese network:
input_a <- layer_input(shape=input_shape, name="left") input_b <- layer_input(shape=input_shape, name="right") processed_a <- input_a %>% base_network processed_b <- input_b %>% base_network end_network <- list(processed_a,processed_b) %>% layer_concatenate() %>% layer_dropout(0.1) %>% layer_dense(2, activation='softmax') model <- keras_model(inputs=list(input_a, input_b), outputs=end_network)
Here is the (correct) output of printing the model:
15:18:27 R > model Model Model: "model_3" ________________________________________________________________________________________________________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================================================================================================================ left (InputLayer) [(None, 1)] 0 ________________________________________________________________________________________________________________________________________________________________________________________________ right (InputLayer) [(None, 1)] 0 ________________________________________________________________________________________________________________________________________________________________________________________________ model_2 (Model) (None, 128) 16768 left[0][0] right[0][0] ________________________________________________________________________________________________________________________________________________________________________________________________ concatenate (Concatenate) (None, 256) 0 model_2[3][0] model_2[4][0] ________________________________________________________________________________________________________________________________________________________________________________________________ dropout_3 (Dropout) (None, 256) 0 concatenate[0][0] ________________________________________________________________________________________________________________________________________________________________________________________________ dense_5 (Dense) (None, 2) 514 dropout_3[0][0] ================================================================================================================================================================================================ Total params: 17,282 Trainable params: 17,282 Non-trainable params: 0 ________________________________________________________________________________________________________________________________________________________________________________________________
Here is the resulting graph with your tool:
Your tool missed the fact that input_right is linked to model_2.
Also, it would be great to be able to draw models recursively (e.g. see the internals of model_2 here)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Here is a piece of code that creates a siamese network:
Here is the (correct) output of printing the model:
Here is the resulting graph with your tool:
Your tool missed the fact that input_right is linked to model_2.
Also, it would be great to be able to draw models recursively (e.g. see the internals of model_2 here)
The text was updated successfully, but these errors were encountered: