-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM model.py
118 lines (106 loc) · 4.06 KB
/
LSTM model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
from pandas import read_csv
from pandas import DataFrame
from pandas import concat
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM
import numpy as np
# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
n_vars = 1 if type(data) is list else data.shape[1]
df = DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
if i == 0:
names += [('var%d(t)' % (j + 1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)]
# put it all together
agg = concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:
agg.dropna(inplace=True)
return agg
# load dataset
dataset = read_csv('C:/Users/ZHUHO/AppData/Local/Programs/Python/Python36/pollution.csv', header=0, index_col=0)
values = dataset.values
# integer encode direction
encoder = LabelEncoder()
values[:, 4] = encoder.fit_transform(values[:, 4])
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)
# frame as supervised learning
reframed = series_to_supervised(scaled, 1, 1)
# drop columns we don't want to predict
reframed.drop(reframed.columns[[8, 9, 10, 11, 12, 13]], axis=1, inplace=True)
print(reframed.head())
#把数据集分成训练集和测试集,然后把训练集和测试集分别分成输入和输出变量
#最后,把输入(X)重构为 LSTM 预期的 3D 格式,即 [样本,时间步,特征]
# split into train and test sets
values = reframed.values
n_train_hours = 25000
train = values[:n_train_hours, :]
test = values[n_train_hours:, :]
# split into input and outputs
train_X, train_y = train[:, :-1], train[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
# design network
model = Sequential()
model.add(LSTM(2, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
#添加一个全连接层,把LSTM的输出转换成想要的输出,做维度变换。
model.add(Activation('sigmoid'))
model.compile(loss='mae', optimizer='Adam')
# fit network
#当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch
#在不能将数据一次性通过神经网络的时候,就需要将数据集分成几个 batch
#一个 batch 中的样本总数是batch_size
history = model.fit(train_X, train_y, epochs=2, batch_size=128, validation_data=(test_X, test_y), verbose=2,
shuffle=False)
# plot history
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
pyplot.show()
# make a prediction
yhat = model.predict(test_X)
test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))
# invert scaling for forecast
inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)
inv_yhat = scaler.inverse_transform(inv_yhat)
inv_yhat = inv_yhat[:, 0]
# invert scaling for actual
test_y = test_y.reshape((len(test_y), 1))
inv_y = concatenate((test_y, test_X[:, 1:]), axis=1)
inv_y = scaler.inverse_transform(inv_y)
inv_y = inv_y[:, 0]
# calculate RMSE
rmse = sqrt(mean_squared_error(inv_y, inv_yhat))
print('Test RMSE: %.3f' % rmse)
A=inv_y[:-1]
B=inv_yhat[:-1]
A = A.astype(np.float64)
B = B.astype(np.float64)
print(A.dtype)
print(B.dtype)
np.save('inv_y.npy',A)
np.save('inv_yhat.npy',B)