-
Notifications
You must be signed in to change notification settings - Fork 86
/
nnplot.py
96 lines (81 loc) · 3.42 KB
/
nnplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#
# MIT License
#
# Copyright (c) 2018 Dabi Ahn
# Portions Copyright (C) 2018-2023 Maxim Integrated Products, Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""
Graphical output routines
"""
import io
import itertools
import re
from textwrap import wrap
import numpy as np
import matplotlib.figure as matfig
def confusion_matrix(cm, labels, normalize=False):
"""
Create confusion matrix image plot
Parameters:
cm : Confusion matrix
labels : Axis labels (strings)
Returns:
data : Confusion matrix image buffer
"""
if normalize:
cm = cm.astype('float')*10.0 / cm.sum(axis=1)[:, np.newaxis]
cm = np.nan_to_num(cm, copy=True)
cm = cm.astype('int')
np.set_printoptions(precision=2)
figsize = min(20, max(5, len(labels) // 2))
fig = matfig.Figure(figsize=(figsize, figsize), dpi=96, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
ax.imshow(cm, cmap='jet')
strlabels = map(str, labels)
classes = [re.sub(r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', x) for x in strlabels]
classes = ['\n'.join(wrap(cl, 40)) for cl in classes]
tick_marks = np.arange(len(classes))
FONTSIZE = 12
ax.set_xlabel('Predicted', fontsize=FONTSIZE)
ax.set_xticks(tick_marks)
rotation = 90 if len(max(classes, key=len)) > 2 else 0
ax.set_xticklabels(classes, fontsize=FONTSIZE, rotation=rotation, ha='center')
ax.xaxis.set_label_position('bottom')
ax.xaxis.tick_bottom()
ax.set_ylabel('Actual', fontsize=FONTSIZE)
ax.set_yticks(tick_marks)
ax.set_yticklabels(classes, fontsize=FONTSIZE, va='center')
ax.yaxis.set_label_position('left')
ax.yaxis.tick_left()
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
ax.text(j, i, format(cm[i, j], 'd') if cm[i, j] != 0 else '.',
horizontalalignment='center',
fontsize=FONTSIZE, verticalalignment='center', color='white')
fig.set_tight_layout(True)
buf = io.BytesIO()
fig.savefig(buf, format='raw', dpi='figure')
buf.seek(0)
data = np.frombuffer(buf.getvalue(), dtype=np.uint8)
data = np.reshape(np.frombuffer(buf.getvalue(), dtype=np.uint8),
newshape=(int(fig.bbox.bounds[3]), # type: ignore
int(fig.bbox.bounds[2]), -1)) # type: ignore
buf.close()
return data