forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_relaxation.cc
1624 lines (1449 loc) · 63.7 KB
/
linear_relaxation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/linear_relaxation.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/container/btree_map.h"
#include "absl/container/flat_hash_set.h"
#include "ortools/base/logging.h"
#include "ortools/base/stl_util.h"
#include "ortools/base/strong_vector.h"
#include "ortools/sat/circuit.h" // for ReindexArcs.
#include "ortools/sat/clause.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_mapping.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/cuts.h"
#include "ortools/sat/implied_bounds.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/linear_programming_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/scheduling_constraints.h"
#include "ortools/sat/scheduling_cuts.h"
#include "ortools/util/logging.h"
#include "ortools/util/saturated_arithmetic.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
bool AppendFullEncodingRelaxation(IntegerVariable var, const Model& model,
LinearRelaxation* relaxation) {
const auto* encoder = model.Get<IntegerEncoder>();
if (encoder == nullptr) return false;
if (!encoder->VariableIsFullyEncoded(var)) return false;
const auto& encoding = encoder->FullDomainEncoding(var);
const IntegerValue var_min = model.Get<IntegerTrail>()->LowerBound(var);
LinearConstraintBuilder at_least_one(&model, IntegerValue(1),
kMaxIntegerValue);
LinearConstraintBuilder encoding_ct(&model, var_min, var_min);
encoding_ct.AddTerm(var, IntegerValue(1));
// Create the constraint if all literal have a view.
std::vector<Literal> at_most_one;
for (const auto value_literal : encoding) {
const Literal lit = value_literal.literal;
const IntegerValue delta = value_literal.value - var_min;
DCHECK_GE(delta, IntegerValue(0));
at_most_one.push_back(lit);
if (!at_least_one.AddLiteralTerm(lit, IntegerValue(1))) return false;
if (delta != IntegerValue(0)) {
if (!encoding_ct.AddLiteralTerm(lit, -delta)) return false;
}
}
relaxation->linear_constraints.push_back(at_least_one.Build());
relaxation->linear_constraints.push_back(encoding_ct.Build());
relaxation->at_most_ones.push_back(at_most_one);
return true;
}
namespace {
std::pair<IntegerValue, IntegerValue> GetMinAndMaxNotEncoded(
IntegerVariable var,
const absl::flat_hash_set<IntegerValue>& encoded_values,
const Model& model) {
const auto* domains = model.Get<IntegerDomains>();
if (domains == nullptr || var >= domains->size()) {
return {kMaxIntegerValue, kMinIntegerValue};
}
// The domain can be large, but the list of values shouldn't, so this
// runs in O(encoded_values.size());
IntegerValue min = kMaxIntegerValue;
for (const int64_t v : (*domains)[var].Values()) {
if (!encoded_values.contains(IntegerValue(v))) {
min = IntegerValue(v);
break;
}
}
IntegerValue max = kMinIntegerValue;
for (const int64_t v : (*domains)[NegationOf(var)].Values()) {
if (!encoded_values.contains(IntegerValue(-v))) {
max = IntegerValue(-v);
break;
}
}
return {min, max};
}
bool LinMaxContainsOnlyOneVarInExpressions(const ConstraintProto& ct) {
CHECK_EQ(ct.constraint_case(), ConstraintProto::ConstraintCase::kLinMax);
int current_var = -1;
for (const LinearExpressionProto& expr : ct.lin_max().exprs()) {
if (expr.vars().empty()) continue;
if (expr.vars().size() > 1) return false;
const int var = PositiveRef(expr.vars(0));
if (current_var == -1) {
current_var = var;
} else if (var != current_var) {
return false;
}
}
return true;
}
// Collect all the affines expressions in a LinMax constraint.
// It checks that these are indeed affine expressions, and that they all share
// the same variable.
// It returns the shared variable, as well as a vector of pairs
// (coefficient, offset) when each affine is coefficient * shared_var + offset.
void CollectAffineExpressionWithSingleVariable(
const ConstraintProto& ct, CpModelMapping* mapping, IntegerVariable* var,
std::vector<std::pair<IntegerValue, IntegerValue>>* affines) {
DCHECK(LinMaxContainsOnlyOneVarInExpressions(ct));
CHECK_EQ(ct.constraint_case(), ConstraintProto::ConstraintCase::kLinMax);
*var = kNoIntegerVariable;
affines->clear();
for (const LinearExpressionProto& expr : ct.lin_max().exprs()) {
if (expr.vars().empty()) {
affines->push_back({IntegerValue(0), IntegerValue(expr.offset())});
} else {
CHECK_EQ(expr.vars().size(), 1);
const IntegerVariable affine_var = mapping->Integer(expr.vars(0));
if (*var == kNoIntegerVariable) {
*var = PositiveVariable(affine_var);
}
if (VariableIsPositive(affine_var)) {
CHECK_EQ(affine_var, *var);
affines->push_back(
{IntegerValue(expr.coeffs(0)), IntegerValue(expr.offset())});
} else {
CHECK_EQ(NegationOf(affine_var), *var);
affines->push_back(
{IntegerValue(-expr.coeffs(0)), IntegerValue(expr.offset())});
}
}
}
}
} // namespace
void AppendRelaxationForEqualityEncoding(IntegerVariable var,
const Model& model,
LinearRelaxation* relaxation,
int* num_tight, int* num_loose) {
const auto* encoder = model.Get<IntegerEncoder>();
const auto* integer_trail = model.Get<IntegerTrail>();
if (encoder == nullptr || integer_trail == nullptr) return;
std::vector<Literal> at_most_one_ct;
absl::flat_hash_set<IntegerValue> encoded_values;
std::vector<ValueLiteralPair> encoding;
{
const std::vector<ValueLiteralPair>& initial_encoding =
encoder->PartialDomainEncoding(var);
if (initial_encoding.empty()) return;
for (const auto value_literal : initial_encoding) {
const Literal literal = value_literal.literal;
// Note that we skip pairs that do not have an Integer view.
if (encoder->GetLiteralView(literal) == kNoIntegerVariable &&
encoder->GetLiteralView(literal.Negated()) == kNoIntegerVariable) {
continue;
}
encoding.push_back(value_literal);
at_most_one_ct.push_back(literal);
encoded_values.insert(value_literal.value);
}
}
if (encoded_values.empty()) return;
// TODO(user): PartialDomainEncoding() filter pair corresponding to literal
// set to false, however the initial variable Domain is not always updated. As
// a result, these min/max can be larger than in reality. Try to fix this even
// if in practice this is a rare occurence, as the presolve should have
// propagated most of what we can.
const auto [min_not_encoded, max_not_encoded] =
GetMinAndMaxNotEncoded(var, encoded_values, model);
// This means that there are no non-encoded value and we have a full encoding.
// We substract the minimum value to reduce its size.
if (min_not_encoded == kMaxIntegerValue) {
const IntegerValue rhs = encoding[0].value;
LinearConstraintBuilder at_least_one(&model, IntegerValue(1),
kMaxIntegerValue);
LinearConstraintBuilder encoding_ct(&model, rhs, rhs);
encoding_ct.AddTerm(var, IntegerValue(1));
for (const auto value_literal : encoding) {
const Literal lit = value_literal.literal;
CHECK(at_least_one.AddLiteralTerm(lit, IntegerValue(1)));
const IntegerValue delta = value_literal.value - rhs;
if (delta != IntegerValue(0)) {
CHECK_GE(delta, IntegerValue(0));
CHECK(encoding_ct.AddLiteralTerm(lit, -delta));
}
}
relaxation->linear_constraints.push_back(at_least_one.Build());
relaxation->linear_constraints.push_back(encoding_ct.Build());
relaxation->at_most_ones.push_back(at_most_one_ct);
++*num_tight;
return;
}
// In this special case, the two constraints below can be merged into an
// equality: var = rhs + sum l_i * (value_i - rhs).
if (min_not_encoded == max_not_encoded) {
const IntegerValue rhs = min_not_encoded;
LinearConstraintBuilder encoding_ct(&model, rhs, rhs);
encoding_ct.AddTerm(var, IntegerValue(1));
for (const auto value_literal : encoding) {
CHECK(encoding_ct.AddLiteralTerm(value_literal.literal,
rhs - value_literal.value));
}
relaxation->at_most_ones.push_back(at_most_one_ct);
relaxation->linear_constraints.push_back(encoding_ct.Build());
++*num_tight;
return;
}
// min + sum l_i * (value_i - min) <= var.
const IntegerValue d_min = min_not_encoded;
LinearConstraintBuilder lower_bound_ct(&model, d_min, kMaxIntegerValue);
lower_bound_ct.AddTerm(var, IntegerValue(1));
for (const auto value_literal : encoding) {
CHECK(lower_bound_ct.AddLiteralTerm(value_literal.literal,
d_min - value_literal.value));
}
// var <= max + sum l_i * (value_i - max).
const IntegerValue d_max = max_not_encoded;
LinearConstraintBuilder upper_bound_ct(&model, kMinIntegerValue, d_max);
upper_bound_ct.AddTerm(var, IntegerValue(1));
for (const auto value_literal : encoding) {
CHECK(upper_bound_ct.AddLiteralTerm(value_literal.literal,
d_max - value_literal.value));
}
// Note that empty/trivial constraints will be filtered later.
relaxation->at_most_ones.push_back(at_most_one_ct);
relaxation->linear_constraints.push_back(lower_bound_ct.Build());
relaxation->linear_constraints.push_back(upper_bound_ct.Build());
++*num_loose;
}
void AppendPartialGreaterThanEncodingRelaxation(IntegerVariable var,
const Model& model,
LinearRelaxation* relaxation) {
const auto* integer_trail = model.Get<IntegerTrail>();
const auto* encoder = model.Get<IntegerEncoder>();
if (integer_trail == nullptr || encoder == nullptr) return;
const absl::btree_map<IntegerValue, Literal>& greater_than_encoding =
encoder->PartialGreaterThanEncoding(var);
if (greater_than_encoding.empty()) return;
// Start by the var >= side.
// And also add the implications between used literals.
{
IntegerValue prev_used_bound = integer_trail->LowerBound(var);
LinearConstraintBuilder lb_constraint(&model, prev_used_bound,
kMaxIntegerValue);
lb_constraint.AddTerm(var, IntegerValue(1));
LiteralIndex prev_literal_index = kNoLiteralIndex;
for (const auto entry : greater_than_encoding) {
if (entry.first <= prev_used_bound) continue;
const LiteralIndex literal_index = entry.second.Index();
const IntegerValue diff = prev_used_bound - entry.first;
// Skip the entry if the literal doesn't have a view.
if (!lb_constraint.AddLiteralTerm(entry.second, diff)) continue;
if (prev_literal_index != kNoLiteralIndex) {
// Add var <= prev_var, which is the same as var + not(prev_var) <= 1
relaxation->at_most_ones.push_back(
{Literal(literal_index), Literal(prev_literal_index).Negated()});
}
prev_used_bound = entry.first;
prev_literal_index = literal_index;
}
relaxation->linear_constraints.push_back(lb_constraint.Build());
}
// Do the same for the var <= side by using NegationOfVar().
// Note that we do not need to add the implications between literals again.
{
IntegerValue prev_used_bound = integer_trail->LowerBound(NegationOf(var));
LinearConstraintBuilder lb_constraint(&model, prev_used_bound,
kMaxIntegerValue);
lb_constraint.AddTerm(var, IntegerValue(-1));
for (const auto entry :
encoder->PartialGreaterThanEncoding(NegationOf(var))) {
if (entry.first <= prev_used_bound) continue;
const IntegerValue diff = prev_used_bound - entry.first;
// Skip the entry if the literal doesn't have a view.
if (!lb_constraint.AddLiteralTerm(entry.second, diff)) continue;
prev_used_bound = entry.first;
}
relaxation->linear_constraints.push_back(lb_constraint.Build());
}
}
namespace {
// Adds enforcing_lit => target <= bounding_var to relaxation.
void AppendEnforcedUpperBound(const Literal enforcing_lit,
const IntegerVariable target,
const IntegerVariable bounding_var, Model* model,
LinearRelaxation* relaxation) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
const IntegerValue max_target_value = integer_trail->UpperBound(target);
const IntegerValue min_var_value = integer_trail->LowerBound(bounding_var);
const IntegerValue max_term_value = max_target_value - min_var_value;
LinearConstraintBuilder lc(model, kMinIntegerValue, max_term_value);
lc.AddTerm(target, IntegerValue(1));
lc.AddTerm(bounding_var, IntegerValue(-1));
CHECK(lc.AddLiteralTerm(enforcing_lit, max_term_value));
relaxation->linear_constraints.push_back(lc.Build());
}
// Adds {enforcing_lits} => rhs_domain_min <= expr <= rhs_domain_max.
// Requires expr offset to be 0.
void AppendEnforcedLinearExpression(
const std::vector<Literal>& enforcing_literals,
const LinearExpression& expr, const IntegerValue rhs_domain_min,
const IntegerValue rhs_domain_max, const Model& model,
LinearRelaxation* relaxation) {
CHECK_EQ(expr.offset, IntegerValue(0));
const LinearExpression canonical_expr = CanonicalizeExpr(expr);
const IntegerTrail* integer_trail = model.Get<IntegerTrail>();
const IntegerValue min_expr_value =
LinExprLowerBound(canonical_expr, *integer_trail);
if (rhs_domain_min > min_expr_value) {
// And(ei) => terms >= rhs_domain_min
// <=> Sum_i (~ei * (rhs_domain_min - min_expr_value)) + terms >=
// rhs_domain_min
LinearConstraintBuilder lc(&model, rhs_domain_min, kMaxIntegerValue);
for (const Literal& literal : enforcing_literals) {
CHECK(lc.AddLiteralTerm(literal.Negated(),
rhs_domain_min - min_expr_value));
}
for (int i = 0; i < canonical_expr.vars.size(); i++) {
lc.AddTerm(canonical_expr.vars[i], canonical_expr.coeffs[i]);
}
relaxation->linear_constraints.push_back(lc.Build());
}
const IntegerValue max_expr_value =
LinExprUpperBound(canonical_expr, *integer_trail);
if (rhs_domain_max < max_expr_value) {
// And(ei) => terms <= rhs_domain_max
// <=> Sum_i (~ei * (rhs_domain_max - max_expr_value)) + terms <=
// rhs_domain_max
LinearConstraintBuilder lc(&model, kMinIntegerValue, rhs_domain_max);
for (const Literal& literal : enforcing_literals) {
CHECK(lc.AddLiteralTerm(literal.Negated(),
rhs_domain_max - max_expr_value));
}
for (int i = 0; i < canonical_expr.vars.size(); i++) {
lc.AddTerm(canonical_expr.vars[i], canonical_expr.coeffs[i]);
}
relaxation->linear_constraints.push_back(lc.Build());
}
}
bool AllLiteralsHaveViews(const IntegerEncoder& encoder,
const std::vector<Literal>& literals) {
for (const Literal lit : literals) {
if (!encoder.LiteralOrNegationHasView(lit)) return false;
}
return true;
}
} // namespace
void AppendBoolOrRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
auto* mapping = model->GetOrCreate<CpModelMapping>();
LinearConstraintBuilder lc(model, IntegerValue(1), kMaxIntegerValue);
for (const int enforcement_ref : ct.enforcement_literal()) {
CHECK(lc.AddLiteralTerm(mapping->Literal(NegatedRef(enforcement_ref)),
IntegerValue(1)));
}
for (const int ref : ct.bool_or().literals()) {
CHECK(lc.AddLiteralTerm(mapping->Literal(ref), IntegerValue(1)));
}
relaxation->linear_constraints.push_back(lc.Build());
}
void AppendBoolAndRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
// TODO(user): These constraints can be many, and if they are not regrouped
// in big at most ones, then they should probably only added lazily as cuts.
// Regroup this with future clique-cut separation logic.
if (!HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
if (ct.enforcement_literal().size() == 1) {
const Literal enforcement = mapping->Literal(ct.enforcement_literal(0));
for (const int ref : ct.bool_and().literals()) {
relaxation->at_most_ones.push_back(
{enforcement, mapping->Literal(ref).Negated()});
}
return;
}
// Andi(e_i) => Andj(x_j)
// <=> num_rhs_terms <= Sum_j(x_j) + num_rhs_terms * Sum_i(~e_i)
int num_literals = ct.bool_and().literals_size();
LinearConstraintBuilder lc(model, IntegerValue(num_literals),
kMaxIntegerValue);
for (const int ref : ct.bool_and().literals()) {
CHECK(lc.AddLiteralTerm(mapping->Literal(ref), IntegerValue(1)));
}
for (const int enforcement_ref : ct.enforcement_literal()) {
CHECK(lc.AddLiteralTerm(mapping->Literal(NegatedRef(enforcement_ref)),
IntegerValue(num_literals)));
}
relaxation->linear_constraints.push_back(lc.Build());
}
void AppendAtMostOneRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
relaxation->at_most_ones.push_back(
mapping->Literals(ct.at_most_one().literals()));
}
void AppendExactlyOneRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
auto* encoder = model->GetOrCreate<IntegerEncoder>();
const std::vector<Literal> literals =
mapping->Literals(ct.exactly_one().literals());
if (AllLiteralsHaveViews(*encoder, literals)) {
LinearConstraintBuilder lc(model, IntegerValue(1), IntegerValue(1));
for (const Literal lit : literals) {
CHECK(lc.AddLiteralTerm(lit, IntegerValue(1)));
}
relaxation->linear_constraints.push_back(lc.Build());
} else {
// We just encode the at most one part that might be partially linearized
// later.
relaxation->at_most_ones.push_back(literals);
}
}
std::vector<Literal> CreateAlternativeLiteralsWithView(
int num_literals, Model* model, LinearRelaxation* relaxation) {
auto* encoder = model->GetOrCreate<IntegerEncoder>();
if (num_literals == 1) {
// This is not supposed to happen, but it is easy enough to cover, just
// in case. We might however want to use encoder->GetTrueLiteral().
const IntegerVariable var = model->Add(NewIntegerVariable(1, 1));
const Literal lit =
encoder->GetOrCreateLiteralAssociatedToEquality(var, IntegerValue(1));
return {lit};
}
if (num_literals == 2) {
const IntegerVariable var = model->Add(NewIntegerVariable(0, 1));
const Literal lit =
encoder->GetOrCreateLiteralAssociatedToEquality(var, IntegerValue(1));
// TODO(user): We shouldn't need to create this view ideally. Even better,
// we should be able to handle Literal natively in the linear relaxation,
// but that is a lot of work.
const IntegerVariable var2 = model->Add(NewIntegerVariable(0, 1));
encoder->AssociateToIntegerEqualValue(lit.Negated(), var2, IntegerValue(1));
return {lit, lit.Negated()};
}
std::vector<Literal> literals;
LinearConstraintBuilder lc_builder(model, IntegerValue(1), IntegerValue(1));
for (int i = 0; i < num_literals; ++i) {
const IntegerVariable var = model->Add(NewIntegerVariable(0, 1));
const Literal lit =
encoder->GetOrCreateLiteralAssociatedToEquality(var, IntegerValue(1));
literals.push_back(lit);
CHECK(lc_builder.AddLiteralTerm(lit, IntegerValue(1)));
}
model->Add(ExactlyOneConstraint(literals));
relaxation->linear_constraints.push_back(lc_builder.Build());
return literals;
}
void AppendCircuitRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
const int num_arcs = ct.circuit().literals_size();
CHECK_EQ(num_arcs, ct.circuit().tails_size());
CHECK_EQ(num_arcs, ct.circuit().heads_size());
// Each node must have exactly one incoming and one outgoing arc (note
// that it can be the unique self-arc of this node too).
absl::btree_map<int, std::vector<Literal>> incoming_arc_constraints;
absl::btree_map<int, std::vector<Literal>> outgoing_arc_constraints;
for (int i = 0; i < num_arcs; i++) {
const Literal arc = mapping->Literal(ct.circuit().literals(i));
const int tail = ct.circuit().tails(i);
const int head = ct.circuit().heads(i);
// Make sure this literal has a view.
model->Add(NewIntegerVariableFromLiteral(arc));
outgoing_arc_constraints[tail].push_back(arc);
incoming_arc_constraints[head].push_back(arc);
}
for (const auto* node_map :
{&outgoing_arc_constraints, &incoming_arc_constraints}) {
for (const auto& entry : *node_map) {
const std::vector<Literal>& exactly_one = entry.second;
if (exactly_one.size() > 1) {
LinearConstraintBuilder at_least_one_lc(model, IntegerValue(1),
kMaxIntegerValue);
for (const Literal l : exactly_one) {
CHECK(at_least_one_lc.AddLiteralTerm(l, IntegerValue(1)));
}
// We separate the two constraints.
relaxation->at_most_ones.push_back(exactly_one);
relaxation->linear_constraints.push_back(at_least_one_lc.Build());
}
}
}
}
void AppendRoutesRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
const int num_arcs = ct.routes().literals_size();
CHECK_EQ(num_arcs, ct.routes().tails_size());
CHECK_EQ(num_arcs, ct.routes().heads_size());
// Each node except node zero must have exactly one incoming and one outgoing
// arc (note that it can be the unique self-arc of this node too). For node
// zero, the number of incoming arcs should be the same as the number of
// outgoing arcs.
absl::btree_map<int, std::vector<Literal>> incoming_arc_constraints;
absl::btree_map<int, std::vector<Literal>> outgoing_arc_constraints;
for (int i = 0; i < num_arcs; i++) {
const Literal arc = mapping->Literal(ct.routes().literals(i));
const int tail = ct.routes().tails(i);
const int head = ct.routes().heads(i);
// Make sure this literal has a view.
model->Add(NewIntegerVariableFromLiteral(arc));
outgoing_arc_constraints[tail].push_back(arc);
incoming_arc_constraints[head].push_back(arc);
}
for (const auto* node_map :
{&outgoing_arc_constraints, &incoming_arc_constraints}) {
for (const auto& entry : *node_map) {
if (entry.first == 0) continue;
const std::vector<Literal>& exactly_one = entry.second;
if (exactly_one.size() > 1) {
LinearConstraintBuilder at_least_one_lc(model, IntegerValue(1),
kMaxIntegerValue);
for (const Literal l : exactly_one) {
CHECK(at_least_one_lc.AddLiteralTerm(l, IntegerValue(1)));
}
// We separate the two constraints.
relaxation->at_most_ones.push_back(exactly_one);
relaxation->linear_constraints.push_back(at_least_one_lc.Build());
}
}
}
LinearConstraintBuilder zero_node_balance_lc(model, IntegerValue(0),
IntegerValue(0));
for (const Literal& incoming_arc : incoming_arc_constraints[0]) {
CHECK(zero_node_balance_lc.AddLiteralTerm(incoming_arc, IntegerValue(1)));
}
for (const Literal& outgoing_arc : outgoing_arc_constraints[0]) {
CHECK(zero_node_balance_lc.AddLiteralTerm(outgoing_arc, IntegerValue(-1)));
}
relaxation->linear_constraints.push_back(zero_node_balance_lc.Build());
}
void AddCumulativeRelaxation(const std::vector<IntervalVariable>& intervals,
const std::vector<AffineExpression>& demands,
const std::vector<LinearExpression>& energies,
IntegerValue capacity_upper_bound, Model* model,
LinearRelaxation* relaxation) {
// TODO(user): Keep a map intervals -> helper, or ct_index->helper to avoid
// creating many helpers for the same constraint.
auto* helper = new SchedulingConstraintHelper(intervals, model);
model->TakeOwnership(helper);
const int num_intervals = helper->NumTasks();
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
IntegerValue min_of_starts = kMaxIntegerValue;
IntegerValue max_of_ends = kMinIntegerValue;
int num_variable_sizes = 0;
int num_optionals = 0;
for (int index = 0; index < num_intervals; ++index) {
min_of_starts = std::min(min_of_starts, helper->StartMin(index));
max_of_ends = std::max(max_of_ends, helper->EndMax(index));
if (helper->IsOptional(index)) {
num_optionals++;
}
if (!helper->SizeIsFixed(index) ||
(!demands.empty() && !integer_trail->IsFixed(demands[index]))) {
num_variable_sizes++;
}
}
VLOG(2) << "Span [" << min_of_starts << ".." << max_of_ends << "] with "
<< num_optionals << " optional intervals, and " << num_variable_sizes
<< " variable size intervals out of " << num_intervals
<< " intervals";
if (num_variable_sizes + num_optionals == 0) return;
const IntegerVariable span_start =
integer_trail->AddIntegerVariable(min_of_starts, max_of_ends);
const IntegerVariable span_size = integer_trail->AddIntegerVariable(
IntegerValue(0), max_of_ends - min_of_starts);
const IntegerVariable span_end =
integer_trail->AddIntegerVariable(min_of_starts, max_of_ends);
IntervalVariable span_var;
if (num_optionals < num_intervals) {
span_var = model->Add(NewInterval(span_start, span_end, span_size));
} else {
const Literal span_lit = Literal(model->Add(NewBooleanVariable()), true);
span_var = model->Add(
NewOptionalInterval(span_start, span_end, span_size, span_lit));
}
model->Add(SpanOfIntervals(span_var, intervals));
LinearConstraintBuilder lc(model, kMinIntegerValue, IntegerValue(0));
lc.AddTerm(span_size, -capacity_upper_bound);
for (int i = 0; i < num_intervals; ++i) {
const IntegerValue demand_lower_bound =
demands.empty() ? IntegerValue(1)
: integer_trail->LowerBound(demands[i]);
const bool demand_is_fixed =
demands.empty() || integer_trail->IsFixed(demands[i]);
if (!helper->IsOptional(i)) {
if (demand_is_fixed) {
lc.AddTerm(helper->Sizes()[i], demand_lower_bound);
} else if (!helper->SizeIsFixed(i) &&
(!energies[i].vars.empty() || energies[i].offset != -1)) {
// We prefer the energy additional info instead of the McCormick
// relaxation.
lc.AddLinearExpression(energies[i]);
} else {
lc.AddQuadraticLowerBound(helper->Sizes()[i], demands[i],
integer_trail);
}
} else {
if (!lc.AddLiteralTerm(helper->PresenceLiteral(i),
helper->SizeMin(i) * demand_lower_bound)) {
return;
}
}
}
relaxation->linear_constraints.push_back(lc.Build());
}
void AppendCumulativeRelaxation(const CpModelProto& model_proto,
const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
CHECK(ct.has_cumulative());
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
std::vector<IntervalVariable> intervals =
mapping->Intervals(ct.cumulative().intervals());
const IntegerValue capacity_upper_bound =
model->GetOrCreate<IntegerTrail>()->UpperBound(
mapping->Affine(ct.cumulative().capacity()));
// Scan energies.
IntervalsRepository* intervals_repository =
model->GetOrCreate<IntervalsRepository>();
std::vector<LinearExpression> energies;
std::vector<AffineExpression> demands;
std::vector<AffineExpression> sizes;
for (int i = 0; i < ct.cumulative().demands_size(); ++i) {
demands.push_back(mapping->Affine(ct.cumulative().demands(i)));
sizes.push_back(intervals_repository->Size(intervals[i]));
}
LinearizeInnerProduct(demands, sizes, model, &energies);
AddCumulativeRelaxation(intervals, demands, energies, capacity_upper_bound,
model, relaxation);
}
void AppendNoOverlapRelaxation(const CpModelProto& model_proto,
const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
CHECK(ct.has_no_overlap());
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
std::vector<IntervalVariable> intervals =
mapping->Intervals(ct.no_overlap().intervals());
AddCumulativeRelaxation(intervals, /*demands=*/{}, /*energies=*/{},
/*capacity_upper_bound=*/IntegerValue(1), model,
relaxation);
}
// Adds the energetic relaxation sum(areas) <= bounding box area.
void AppendNoOverlap2dRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
CHECK(ct.has_no_overlap_2d());
if (HasEnforcementLiteral(ct)) return;
auto* mapping = model->GetOrCreate<CpModelMapping>();
std::vector<IntervalVariable> x_intervals =
mapping->Intervals(ct.no_overlap_2d().x_intervals());
std::vector<IntervalVariable> y_intervals =
mapping->Intervals(ct.no_overlap_2d().y_intervals());
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* intervals_repository = model->GetOrCreate<IntervalsRepository>();
IntegerValue x_min = kMaxIntegerValue;
IntegerValue x_max = kMinIntegerValue;
IntegerValue y_min = kMaxIntegerValue;
IntegerValue y_max = kMinIntegerValue;
std::vector<AffineExpression> x_sizes;
std::vector<AffineExpression> y_sizes;
for (int i = 0; i < ct.no_overlap_2d().x_intervals_size(); ++i) {
x_sizes.push_back(intervals_repository->Size(x_intervals[i]));
y_sizes.push_back(intervals_repository->Size(y_intervals[i]));
x_min = std::min(x_min, integer_trail->LevelZeroLowerBound(
intervals_repository->Start(x_intervals[i])));
x_max = std::max(x_max, integer_trail->LevelZeroUpperBound(
intervals_repository->End(x_intervals[i])));
y_min = std::min(y_min, integer_trail->LevelZeroLowerBound(
intervals_repository->Start(y_intervals[i])));
y_max = std::max(y_max, integer_trail->LevelZeroUpperBound(
intervals_repository->End(y_intervals[i])));
}
const IntegerValue max_area =
IntegerValue(CapProd(CapSub(x_max.value(), x_min.value()),
CapSub(y_max.value(), y_min.value())));
if (max_area == kMaxIntegerValue) return;
LinearConstraintBuilder lc(model, IntegerValue(0), max_area);
for (int i = 0; i < ct.no_overlap_2d().x_intervals_size(); ++i) {
if (intervals_repository->IsPresent(x_intervals[i]) &&
intervals_repository->IsPresent(y_intervals[i])) {
LinearConstraintBuilder linear_energy(model);
if (DetectLinearEncodingOfProducts(x_sizes[i], y_sizes[i], model,
&linear_energy)) {
lc.AddLinearExpression(linear_energy.BuildExpression());
} else {
lc.AddQuadraticLowerBound(x_sizes[i], y_sizes[i], integer_trail);
}
} else if (intervals_repository->IsPresent(x_intervals[i]) ||
intervals_repository->IsPresent(y_intervals[i]) ||
(intervals_repository->PresenceLiteral(x_intervals[i]) ==
intervals_repository->PresenceLiteral(y_intervals[i]))) {
// We have only one active literal.
const Literal presence_literal =
intervals_repository->IsPresent(x_intervals[i])
? intervals_repository->PresenceLiteral(y_intervals[i])
: intervals_repository->PresenceLiteral(x_intervals[i]);
const IntegerValue area_min =
integer_trail->LevelZeroLowerBound(x_sizes[i]) *
integer_trail->LevelZeroLowerBound(y_sizes[i]);
if (area_min != 0) {
// Not including the term if we don't have a view is ok.
(void)lc.AddLiteralTerm(presence_literal, area_min);
}
}
}
relaxation->linear_constraints.push_back(lc.Build());
}
void AppendLinMaxRelaxationPart1(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
auto* mapping = model->GetOrCreate<CpModelMapping>();
// We want to linearize target = max(exprs[1], exprs[2], ..., exprs[d]).
// Part 1: Encode target >= max(exprs[1], exprs[2], ..., exprs[d])
const LinearExpression negated_target =
NegationOf(mapping->GetExprFromProto(ct.lin_max().target()));
for (int i = 0; i < ct.lin_max().exprs_size(); ++i) {
const LinearExpression expr =
mapping->GetExprFromProto(ct.lin_max().exprs(i));
LinearConstraintBuilder lc(model, kMinIntegerValue, IntegerValue(0));
lc.AddLinearExpression(negated_target);
lc.AddLinearExpression(expr);
relaxation->linear_constraints.push_back(lc.Build());
}
}
// TODO(user): experiment with:
// 1) remove this code
// 2) keep this code
// 3) remove this code and create the cut generator at level 1.
void AppendMaxAffineRelaxation(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
IntegerVariable var;
std::vector<std::pair<IntegerValue, IntegerValue>> affines;
auto* mapping = model->GetOrCreate<CpModelMapping>();
CollectAffineExpressionWithSingleVariable(ct, mapping, &var, &affines);
if (var == kNoIntegerVariable ||
model->GetOrCreate<IntegerTrail>()->IsFixed(var)) {
return;
}
CHECK(VariableIsPositive(var));
const LinearExpression target_expr =
PositiveVarExpr(mapping->GetExprFromProto(ct.lin_max().target()));
relaxation->linear_constraints.push_back(
BuildMaxAffineUpConstraint(target_expr, var, affines, model));
}
void AddMaxAffineCutGenerator(const ConstraintProto& ct, Model* model,
LinearRelaxation* relaxation) {
IntegerVariable var;
std::vector<std::pair<IntegerValue, IntegerValue>> affines;
auto* mapping = model->GetOrCreate<CpModelMapping>();
CollectAffineExpressionWithSingleVariable(ct, mapping, &var, &affines);
if (var == kNoIntegerVariable ||
model->GetOrCreate<IntegerTrail>()->IsFixed(var)) {
return;
}
// If the target is constant, propagation is enough.
if (ct.lin_max().target().vars().empty()) return;
const LinearExpression target_expr =
PositiveVarExpr(mapping->GetExprFromProto(ct.lin_max().target()));
relaxation->cut_generators.push_back(CreateMaxAffineCutGenerator(
target_expr, var, affines, "AffineMax", model));
}
// Part 2: Encode upper bound on X.
//
// Add linking constraint to the CP solver
// sum zi = 1 and for all i, zi => max = expr_i.
void AppendLinMaxRelaxationPart2(
IntegerVariable target, const std::vector<Literal>& alternative_literals,
const std::vector<LinearExpression>& exprs, Model* model,
LinearRelaxation* relaxation) {
const int num_exprs = exprs.size();
GenericLiteralWatcher* watcher = model->GetOrCreate<GenericLiteralWatcher>();
// First add the CP constraints.
for (int i = 0; i < num_exprs; ++i) {
LinearExpression local_expr;
local_expr.vars = NegationOf(exprs[i].vars);
local_expr.vars.push_back(target);
local_expr.coeffs = exprs[i].coeffs;
local_expr.coeffs.push_back(IntegerValue(1));
IntegerSumLE* upper_bound =
new IntegerSumLE({alternative_literals[i]}, local_expr.vars,
local_expr.coeffs, exprs[i].offset, model);
upper_bound->RegisterWith(watcher);
model->TakeOwnership(upper_bound);
}
// For the relaxation, we use different constraints with a stronger linear
// relaxation as explained in the .h
//
// TODO(user): Consider passing the x_vars to this method instead of
// computing it here.
std::vector<IntegerVariable> x_vars;
for (int i = 0; i < num_exprs; ++i) {
x_vars.insert(x_vars.end(), exprs[i].vars.begin(), exprs[i].vars.end());
}
gtl::STLSortAndRemoveDuplicates(&x_vars);
// All expressions should only contain positive variables.
DCHECK(std::all_of(x_vars.begin(), x_vars.end(), [](IntegerVariable var) {
return VariableIsPositive(var);
}));
std::vector<std::vector<IntegerValue>> sum_of_max_corner_diff(
num_exprs, std::vector<IntegerValue>(num_exprs, IntegerValue(0)));
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
for (int i = 0; i < num_exprs; ++i) {
for (int j = 0; j < num_exprs; ++j) {
if (i == j) continue;
for (const IntegerVariable x_var : x_vars) {
const IntegerValue lb = integer_trail->LevelZeroLowerBound(x_var);
const IntegerValue ub = integer_trail->LevelZeroUpperBound(x_var);
const IntegerValue diff =
GetCoefficient(x_var, exprs[j]) - GetCoefficient(x_var, exprs[i]);
sum_of_max_corner_diff[i][j] += std::max(diff * lb, diff * ub);
}
}
}
for (int i = 0; i < num_exprs; ++i) {
LinearConstraintBuilder lc(model, kMinIntegerValue, IntegerValue(0));
lc.AddTerm(target, IntegerValue(1));
for (int j = 0; j < exprs[i].vars.size(); ++j) {
lc.AddTerm(exprs[i].vars[j], -exprs[i].coeffs[j]);
}
for (int j = 0; j < num_exprs; ++j) {
CHECK(lc.AddLiteralTerm(alternative_literals[j],
-exprs[j].offset - sum_of_max_corner_diff[i][j]));
}
relaxation->linear_constraints.push_back(lc.Build());
}
}
void AppendLinearConstraintRelaxation(const ConstraintProto& ct,
bool linearize_enforced_constraints,
Model* model,
LinearRelaxation* relaxation) {
auto* mapping = model->Get<CpModelMapping>();
// Note that we ignore the holes in the domain.
//
// TODO(user): In LoadLinearConstraint() we already created intermediate
// Booleans for each disjoint interval, we should reuse them here if
// possible.
//
// TODO(user): process the "at most one" part of a == 1 separately?
const IntegerValue rhs_domain_min = IntegerValue(ct.linear().domain(0));
const IntegerValue rhs_domain_max =
IntegerValue(ct.linear().domain(ct.linear().domain_size() - 1));
if (rhs_domain_min == std::numeric_limits<int64_t>::min() &&
rhs_domain_max == std::numeric_limits<int64_t>::max())
return;
if (!HasEnforcementLiteral(ct)) {
LinearConstraintBuilder lc(model, rhs_domain_min, rhs_domain_max);
for (int i = 0; i < ct.linear().vars_size(); i++) {
const int ref = ct.linear().vars(i);
const int64_t coeff = ct.linear().coeffs(i);
lc.AddTerm(mapping->Integer(ref), IntegerValue(coeff));
}
relaxation->linear_constraints.push_back(lc.Build());
return;
}
// Reified version.
if (!linearize_enforced_constraints) return;
// We linearize fully reified constraints of size 1 all together for a given
// variable. But we need to process half-reified ones.
if (!mapping->IsHalfEncodingConstraint(&ct) && ct.linear().vars_size() <= 1) {
return;
}
std::vector<Literal> enforcing_literals;
enforcing_literals.reserve(ct.enforcement_literal_size());
for (const int enforcement_ref : ct.enforcement_literal()) {
enforcing_literals.push_back(mapping->Literal(enforcement_ref));
}
LinearExpression expr;
expr.vars.reserve(ct.linear().vars_size());
expr.coeffs.reserve(ct.linear().vars_size());
for (int i = 0; i < ct.linear().vars_size(); i++) {
int ref = ct.linear().vars(i);