forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlb_tree_search.cc
561 lines (511 loc) · 22.1 KB
/
lb_tree_search.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/lb_tree_search.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/random/distributions.h"
#include "absl/strings/str_cat.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/sat/cp_model_mapping.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/integer_search.h"
#include "ortools/sat/linear_programming_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_decision.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/synchronization.h"
#include "ortools/sat/util.h"
#include "ortools/util/strong_integers.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
LbTreeSearch::LbTreeSearch(Model* model)
: time_limit_(model->GetOrCreate<TimeLimit>()),
random_(model->GetOrCreate<ModelRandomGenerator>()),
sat_solver_(model->GetOrCreate<SatSolver>()),
integer_encoder_(model->GetOrCreate<IntegerEncoder>()),
integer_trail_(model->GetOrCreate<IntegerTrail>()),
shared_response_(model->GetOrCreate<SharedResponseManager>()),
sat_decision_(model->GetOrCreate<SatDecisionPolicy>()),
search_helper_(model->GetOrCreate<IntegerSearchHelper>()),
parameters_(*model->GetOrCreate<SatParameters>()) {
// We should create this class only in the presence of an objective.
//
// TODO(user): Starts with an initial variable score for all variable in
// the objective at their minimum value? this should emulate the first step of
// the core approach and gives a similar bound.
const ObjectiveDefinition* objective = model->Get<ObjectiveDefinition>();
CHECK(objective != nullptr);
objective_var_ = objective->objective_var;
// Identify an LP with the same objective variable.
//
// TODO(user): if we have many independent LP, this will find nothing.
for (LinearProgrammingConstraint* lp :
*model->GetOrCreate<LinearProgrammingConstraintCollection>()) {
if (lp->ObjectiveVariable() == objective_var_) {
lp_constraint_ = lp;
}
}
// We use the normal SAT search but we will bump the variable activity
// slightly differently. In addition to the conflicts, we also bump it each
// time the objective lower bound increase in a sub-node.
search_heuristic_ =
SequentialSearch({SatSolverHeuristic(model),
model->GetOrCreate<SearchHeuristics>()->fixed_search});
last_logging_time_ = absl::Now();
}
void LbTreeSearch::UpdateParentObjective(int level) {
CHECK_GE(level, 0);
CHECK_LT(level, current_branch_.size());
if (level == 0) return;
const NodeIndex parent_index = current_branch_[level - 1];
Node& parent = nodes_[parent_index];
const NodeIndex child_index = current_branch_[level];
const Node& child = nodes_[child_index];
if (parent.true_child == child_index) {
parent.UpdateTrueObjective(child.MinObjective());
} else {
CHECK_EQ(parent.false_child, child_index);
parent.UpdateFalseObjective(child.MinObjective());
}
}
void LbTreeSearch::UpdateObjectiveFromParent(int level) {
CHECK_GE(level, 0);
CHECK_LT(level, current_branch_.size());
if (level == 0) return;
const NodeIndex parent_index = current_branch_[level - 1];
const Node& parent = nodes_[parent_index];
CHECK_GE(parent.MinObjective(), current_objective_lb_);
const NodeIndex child_index = current_branch_[level];
Node& child = nodes_[child_index];
if (parent.true_child == child_index) {
child.UpdateObjective(parent.true_objective);
} else {
CHECK_EQ(parent.false_child, child_index);
child.UpdateObjective(parent.false_objective);
}
}
void LbTreeSearch::DebugDisplayTree(NodeIndex root) const {
int num_nodes = 0;
const IntegerValue root_lb = nodes_[root].MinObjective();
const auto shifted_lb = [root_lb](IntegerValue lb) {
return std::max<int64_t>(0, (lb - root_lb).value());
};
absl::StrongVector<NodeIndex, int> level(nodes_.size(), 0);
std::vector<NodeIndex> to_explore = {root};
while (!to_explore.empty()) {
NodeIndex n = to_explore.back();
to_explore.pop_back();
++num_nodes;
const Node& node = nodes_[n];
std::string s(level[n], ' ');
absl::StrAppend(&s, "#", n.value());
if (node.true_child < nodes_.size()) {
absl::StrAppend(&s, " [t:#", node.true_child.value(), " ",
shifted_lb(node.true_objective), "]");
to_explore.push_back(node.true_child);
level[node.true_child] = level[n] + 1;
} else {
absl::StrAppend(&s, " [t:## ", shifted_lb(node.true_objective), "]");
}
if (node.false_child < nodes_.size()) {
absl::StrAppend(&s, " [f:#", node.false_child.value(), " ",
shifted_lb(node.false_objective), "]");
to_explore.push_back(node.false_child);
level[node.false_child] = level[n] + 1;
} else {
absl::StrAppend(&s, " [f:## ", shifted_lb(node.false_objective), "]");
}
LOG(INFO) << s;
}
LOG(INFO) << "num_nodes: " << num_nodes;
}
SatSolver::Status LbTreeSearch::Search(
const std::function<void()>& feasible_solution_observer) {
if (!sat_solver_->RestoreSolverToAssumptionLevel()) {
return sat_solver_->UnsatStatus();
}
// We currently restart the search tree from scratch from time to times:
// - At most every kNumBranchesBeforePeriodicRestarts branches explored for
// at most kMaxNumInitialRestarts times.
// - Every time we backtrack to level zero, we count how many nodes are
// worse than the best known objective lower bound. If this is true for more
// than half of the existing nodes, we restart and clear all nodes.
// If if this happens during the initial restarts phase, it reset the above
// counter and uses 1 of the available initial restarts.
//
// This has 2 advantages:
// - It allows our "pseudo-cost" to kick in and experimentally result in
// smaller trees down the road.
// - It removes large inefficient search trees.
//
// TODO(user): a strong branching initial start, or allowing a few decision
// per nodes might be a better approach.
//
// TODO(user): It would also be cool to exploit the reason for the LB increase
// even more.
const int64_t kNumBranchesBeforePeriodicRestarts = 1000;
int64_t num_restarts = 0;
const int kMaxNumInitialRestarts = 10;
while (!time_limit_->LimitReached() && !shared_response_->ProblemIsSolved()) {
// This is the current bound we try to improve. We cache it here to avoid
// getting the lock many times and it is also easier to follow the code if
// this is assumed constant for one iteration.
current_objective_lb_ = shared_response_->GetInnerObjectiveLowerBound();
// Propagate upward in the tree the new objective lb.
if (!current_branch_.empty()) {
// Our branch is always greater or equal to the level.
// We increase the objective_lb of the current node if needed.
{
const int current_level = sat_solver_->CurrentDecisionLevel();
CHECK_GE(current_branch_.size(), current_level);
for (int i = 0; i < current_level; ++i) {
CHECK(sat_solver_->Assignment().LiteralIsAssigned(
nodes_[current_branch_[i]].literal));
}
if (current_level < current_branch_.size()) {
nodes_[current_branch_[current_level]].UpdateObjective(
integer_trail_->LowerBound(objective_var_));
}
// Minor optim: sometimes, because of the LP and cuts, the reason for
// objective_var_ only contains lower level literals, so we can exploit
// that.
//
// TODO(user): No point checking that if the objective lb wasn't
// assigned at this level.
//
// TODO(user): Exploit the reasons further.
if (integer_trail_->LowerBound(objective_var_) >
integer_trail_->LevelZeroLowerBound(objective_var_)) {
const std::vector<Literal> reason =
integer_trail_->ReasonFor(IntegerLiteral::GreaterOrEqual(
objective_var_, integer_trail_->LowerBound(objective_var_)));
int max_level = 0;
for (const Literal l : reason) {
max_level = std::max<int>(
max_level,
sat_solver_->LiteralTrail().Info(l.Variable()).level);
}
if (max_level < current_level) {
nodes_[current_branch_[max_level]].UpdateObjective(
integer_trail_->LowerBound(objective_var_));
}
}
}
// Propagate upward and then forward any new bounds.
for (int level = current_branch_.size(); --level > 0;) {
UpdateParentObjective(level);
}
nodes_[current_branch_[0]].UpdateObjective(current_objective_lb_);
for (int level = 1; level < current_branch_.size(); ++level) {
UpdateObjectiveFromParent(level);
}
// If the root lb increased, update global shared objective lb.
const IntegerValue bound = nodes_[current_branch_[0]].MinObjective();
if (bound > current_objective_lb_) {
shared_response_->UpdateInnerObjectiveBounds(
absl::StrCat("lb_tree_search #nodes:", nodes_.size(),
" #rc:", num_rc_detected_, " #imports:", num_imports_,
" #restarts:", num_restarts),
bound, integer_trail_->LevelZeroUpperBound(objective_var_));
current_objective_lb_ = bound;
if (VLOG_IS_ON(3)) DebugDisplayTree(current_branch_[0]);
}
}
// Each time we are back here, we bump the activities of the variable that
// are part of the objective lower bound reason.
//
// Note that this is why we prefer not to increase the lower zero lower
// bound of objective_var_ with the tree root lower bound, so we can exploit
// more reasons.
//
// TODO(user): This is slightly different than bumping each time we
// push a decision that result in an LB increase. This is also called on
// backjump for instance.
if (integer_trail_->LowerBound(objective_var_) >
integer_trail_->LevelZeroLowerBound(objective_var_)) {
std::vector<Literal> reason =
integer_trail_->ReasonFor(IntegerLiteral::GreaterOrEqual(
objective_var_, integer_trail_->LowerBound(objective_var_)));
sat_decision_->BumpVariableActivities(reason);
sat_decision_->UpdateVariableActivityIncrement();
}
// Forget the whole tree and restart.
// We will do it periodically at the beginning of the search each time we
// cross the k * kNumBranchesBeforeInitialRestarts branches explored.
// This will happen at most kMaxNumInitialRestarts times.
if (num_decisions_taken_ >= num_decisions_taken_at_last_restart_ +
kNumBranchesBeforePeriodicRestarts &&
num_restarts < kMaxNumInitialRestarts) {
++num_restarts;
num_decisions_taken_at_last_restart_ = num_decisions_taken_;
VLOG(2) << "lb_tree_search initial_restart nodes: " << nodes_.size()
<< ", branches:" << num_decisions_taken_
<< ", restarts: " << num_restarts;
nodes_.clear();
current_branch_.clear();
if (!sat_solver_->RestoreSolverToAssumptionLevel()) {
return sat_solver_->UnsatStatus();
}
}
// Backtrack if needed.
//
// Our algorithm stop exploring a branch as soon as its objective lower
// bound is greater than the root lower bound. We then backtrack to the
// first node in the branch that is not yet closed under this bound.
//
// TODO(user): If we remember how far we can backjump for both true/false
// branch, we could be more efficient.
while (current_branch_.size() > sat_solver_->CurrentDecisionLevel() + 1 ||
(current_branch_.size() > 1 &&
nodes_[current_branch_.back()].MinObjective() >
current_objective_lb_)) {
current_branch_.pop_back();
}
// Backtrack the solver.
{
int backtrack_level =
std::max(0, static_cast<int>(current_branch_.size()) - 1);
// Periodic restart.
if (num_decisions_taken_ >= num_decisions_taken_at_last_import_ + 10000) {
backtrack_level = 0;
}
sat_solver_->Backtrack(backtrack_level);
if (!sat_solver_->FinishPropagation()) {
return sat_solver_->UnsatStatus();
}
}
// This will import other workers bound if we are back to level zero.
if (sat_solver_->CurrentDecisionLevel() == 0) {
++num_imports_;
num_decisions_taken_at_last_import_ = num_decisions_taken_;
}
if (!search_helper_->BeforeTakingDecision()) {
return sat_solver_->UnsatStatus();
}
// If the search has not just been restarted (in which case nodes_ would be
// empty), and if we are at level zero (either naturally, or if the
// backtrack level was set to zero in the above code), let's run a different
// heuristic to decide whether to retart the search from scratch or not.
//
// We ignore small search trees.
if (sat_solver_->CurrentDecisionLevel() == 0 && nodes_.size() > 50) {
// Let's count how many nodes have worse objective bounds than the best
// known external objective lower bound.
const IntegerValue latest_lb =
shared_response_->GetInnerObjectiveLowerBound();
int num_nodes_with_lower_objective = 0;
for (const Node& node : nodes_) {
if (node.MinObjective() < latest_lb) num_nodes_with_lower_objective++;
}
if (num_nodes_with_lower_objective * 2 > nodes_.size()) {
++num_restarts;
num_decisions_taken_at_last_restart_ = num_decisions_taken_;
VLOG(2) << "lb_tree_search restart nodes: "
<< num_nodes_with_lower_objective << "/" << nodes_.size()
<< " : "
<< 100.0 * num_nodes_with_lower_objective / nodes_.size() << "%"
<< ", branches:" << num_decisions_taken_
<< ", restarts: " << num_restarts;
nodes_.clear();
current_branch_.clear();
}
}
// Dive: Follow the branch with lowest objective.
// Note that we do not creates new nodes here.
while (current_branch_.size() == sat_solver_->CurrentDecisionLevel() + 1) {
const int level = current_branch_.size() - 1;
CHECK_EQ(level, sat_solver_->CurrentDecisionLevel());
Node& node = nodes_[current_branch_[level]];
node.UpdateObjective(std::max(
current_objective_lb_, integer_trail_->LowerBound(objective_var_)));
if (node.MinObjective() > current_objective_lb_) {
break;
}
CHECK_EQ(node.MinObjective(), current_objective_lb_) << level;
// This will be set to the next node index.
NodeIndex n;
// If the variable is already fixed, we bypass the node and connect
// its parent directly to the relevant child.
if (sat_solver_->Assignment().LiteralIsAssigned(node.literal)) {
IntegerValue new_lb;
if (sat_solver_->Assignment().LiteralIsTrue(node.literal)) {
n = node.true_child;
new_lb = node.true_objective;
} else {
n = node.false_child;
new_lb = node.false_objective;
}
// We jump directly to the subnode.
// Else we will change the root.
current_branch_.pop_back();
if (!current_branch_.empty()) {
const NodeIndex parent = current_branch_.back();
if (sat_solver_->Assignment().LiteralIsTrue(nodes_[parent].literal)) {
nodes_[parent].true_child = n;
nodes_[parent].UpdateTrueObjective(new_lb);
} else {
CHECK(sat_solver_->Assignment().LiteralIsFalse(
nodes_[parent].literal));
nodes_[parent].false_child = n;
nodes_[parent].UpdateFalseObjective(new_lb);
}
if (nodes_[parent].MinObjective() > current_objective_lb_) break;
}
} else {
// If both lower bound are the same, we pick a random sub-branch.
bool choose_true = node.true_objective < node.false_objective;
if (node.true_objective == node.false_objective) {
choose_true = absl::Bernoulli(*random_, 0.5);
}
if (choose_true) {
n = node.true_child;
search_helper_->TakeDecision(node.literal);
} else {
n = node.false_child;
search_helper_->TakeDecision(node.literal.Negated());
}
num_decisions_taken_++;
// Conflict?
if (current_branch_.size() != sat_solver_->CurrentDecisionLevel()) {
if (choose_true) {
node.UpdateTrueObjective(kMaxIntegerValue);
} else {
node.UpdateFalseObjective(kMaxIntegerValue);
}
break;
}
// Update the proper field and abort the dive if we crossed the
// threshold.
const IntegerValue lb = integer_trail_->LowerBound(objective_var_);
if (choose_true) {
node.UpdateTrueObjective(lb);
} else {
node.UpdateFalseObjective(lb);
}
if (lb > current_objective_lb_) break;
}
shared_response_->LogPeriodicMessage(
"TreeS",
absl::StrCat("#nodes:", nodes_.size(), " #branches:",
num_decisions_taken_, " #imports:", num_imports_),
&last_logging_time_);
if (n < nodes_.size()) {
current_branch_.push_back(n);
} else {
break;
}
}
// If a conflict occurred, we will backtrack.
if (current_branch_.size() != sat_solver_->CurrentDecisionLevel()) {
continue;
}
// This test allow to not take a decision when the branch is already closed
// (i.e. the true branch or false branch lb is high enough). Adding it
// basically changes if we take the decision later when we explore the
// branch or right now.
//
// I feel taking it later is better. It also avoid creating uneeded nodes.
// It does change the behavior on a few problem though. For instance on
// irp.mps.gz, the search works better without this, whatever the random
// seed. Not sure why, maybe it creates more diversity?
//
// Another difference is that if the search is done and we have a feasible
// solution, we will not report it because of this test (except if we are
// at the optimal).
if (integer_trail_->LowerBound(objective_var_) > current_objective_lb_) {
continue;
}
// Increase the size of the tree by exploring a new decision.
const LiteralIndex decision =
search_helper_->GetDecision(search_heuristic_);
// No new decision: search done.
if (time_limit_->LimitReached()) return SatSolver::LIMIT_REACHED;
if (decision == kNoLiteralIndex) {
feasible_solution_observer();
continue;
}
// Create a new node.
// Note that the decision will be pushed to the solver on the next loop.
const NodeIndex n(nodes_.size());
nodes_.emplace_back(Literal(decision),
std::max(current_objective_lb_,
integer_trail_->LowerBound(objective_var_)));
if (!current_branch_.empty()) {
const NodeIndex parent = current_branch_.back();
if (sat_solver_->Assignment().LiteralIsTrue(nodes_[parent].literal)) {
nodes_[parent].true_child = n;
nodes_[parent].UpdateTrueObjective(nodes_.back().MinObjective());
} else {
CHECK(sat_solver_->Assignment().LiteralIsFalse(nodes_[parent].literal));
nodes_[parent].false_child = n;
nodes_[parent].UpdateFalseObjective(nodes_.back().MinObjective());
}
}
current_branch_.push_back(n);
// Looking at the reduced costs, we can already have a bound for one of the
// branch. Increasing the corresponding objective can save some branches,
// and also allow for a more incremental LP solving since we do less back
// and forth.
//
// TODO(user): The code to recover that is a bit convoluted. Alternatively
// Maybe we should do a "fast" propagation without the LP in each branch.
// That will work as long as we keep these optimal LP constraints around
// and propagate them.
//
// TODO(user): Incorporate this in the heuristic so we choose more Boolean
// inside these LP explanations?
if (lp_constraint_ != nullptr) {
// Note that this return literal EQUIVALENT to the decision, not just
// implied by it. We need that for correctness.
int num_tests = 0;
for (const IntegerLiteral integer_literal :
integer_encoder_->GetIntegerLiterals(Literal(decision))) {
if (integer_trail_->IsCurrentlyIgnored(integer_literal.var)) continue;
// To avoid bad corner case. Not sure it ever triggers.
if (++num_tests > 10) break;
// TODO(user): we could consider earlier constraint instead of just
// looking at the last one, but experiments didn't really show a big
// gain.
const auto& cts = lp_constraint_->OptimalConstraints();
if (cts.empty()) continue;
const std::unique_ptr<IntegerSumLE>& rc = cts.back();
const std::pair<IntegerValue, IntegerValue> bounds =
rc->ConditionalLb(integer_literal, objective_var_);
Node& node = nodes_[n];
if (bounds.first > node.false_objective) {
++num_rc_detected_;
node.UpdateFalseObjective(bounds.first);
}
if (bounds.second > node.true_objective) {
++num_rc_detected_;
node.UpdateTrueObjective(bounds.second);
}
}
}
}
return SatSolver::LIMIT_REACHED;
}
} // namespace sat
} // namespace operations_research