forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintervals.h
803 lines (700 loc) · 31.3 KB
/
intervals.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_INTERVALS_H_
#define OR_TOOLS_SAT_INTERVALS_H_
#include <cstdint>
#include <functional>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/base/strong_vector.h"
#include "ortools/sat/cp_constraints.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/model.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/precedences.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/rev.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
DEFINE_STRONG_INDEX_TYPE(IntervalVariable);
const IntervalVariable kNoIntervalVariable(-1);
// This class maintains a set of intervals which correspond to three integer
// variables (start, end and size). It automatically registers with the
// PrecedencesPropagator the relation between the bounds of each interval and
// provides many helper functions to add precedences relation between intervals.
class IntervalsRepository {
public:
explicit IntervalsRepository(Model* model)
: model_(model),
assignment_(model->GetOrCreate<Trail>()->Assignment()),
integer_trail_(model->GetOrCreate<IntegerTrail>()) {}
// Returns the current number of intervals in the repository.
// The interval will always be identified by an integer in [0, num_intervals).
int NumIntervals() const { return starts_.size(); }
// Functions to add a new interval to the repository.
// If add_linear_relation is true, then we also link start, size and end.
//
// - If size == kNoIntegerVariable, then the size is fixed to fixed_size.
// - If is_present != kNoLiteralIndex, then this is an optional interval.
IntervalVariable CreateInterval(IntegerVariable start, IntegerVariable end,
IntegerVariable size, IntegerValue fixed_size,
LiteralIndex is_present);
IntervalVariable CreateInterval(AffineExpression start, AffineExpression end,
AffineExpression size,
LiteralIndex is_present,
bool add_linear_relation);
// Returns whether or not a interval is optional and the associated literal.
bool IsOptional(IntervalVariable i) const {
return is_present_[i] != kNoLiteralIndex;
}
Literal PresenceLiteral(IntervalVariable i) const {
return Literal(is_present_[i]);
}
bool IsPresent(IntervalVariable i) const {
if (!IsOptional(i)) return true;
return assignment_.LiteralIsTrue(PresenceLiteral(i));
}
bool IsAbsent(IntervalVariable i) const {
if (!IsOptional(i)) return false;
return assignment_.LiteralIsFalse(PresenceLiteral(i));
}
// The 3 integer variables associated to a interval.
// Fixed size intervals will have a kNoIntegerVariable as size.
//
// Note: For an optional interval, the start/end variables are propagated
// asssuming the interval is present. Because of that, these variables can
// cross each other or have an empty domain. If any of this happen, then the
// PresenceLiteral() of this interval will be propagated to false.
AffineExpression Size(IntervalVariable i) const { return sizes_[i]; }
AffineExpression Start(IntervalVariable i) const { return starts_[i]; }
AffineExpression End(IntervalVariable i) const { return ends_[i]; }
// Deprecated.
IntegerVariable SizeVar(IntervalVariable i) const {
if (sizes_[i].var != kNoIntegerVariable) {
CHECK_EQ(sizes_[i].coeff, 1);
CHECK_EQ(sizes_[i].constant, 0);
}
return sizes_[i].var;
}
IntegerVariable StartVar(IntervalVariable i) const {
if (starts_[i].var != kNoIntegerVariable) {
CHECK_EQ(starts_[i].coeff, 1);
CHECK_EQ(starts_[i].constant, 0);
}
return starts_[i].var;
}
IntegerVariable EndVar(IntervalVariable i) const {
if (ends_[i].var != kNoIntegerVariable) {
CHECK_EQ(ends_[i].coeff, 1);
CHECK_EQ(ends_[i].constant, 0);
}
return ends_[i].var;
}
// Return the minimum size of the given IntervalVariable.
IntegerValue MinSize(IntervalVariable i) const {
return integer_trail_->LowerBound(sizes_[i]);
}
// Return the maximum size of the given IntervalVariable.
IntegerValue MaxSize(IntervalVariable i) const {
return integer_trail_->UpperBound(sizes_[i]);
}
// Utility function that returns a vector will all intervals.
std::vector<IntervalVariable> AllIntervals() const {
std::vector<IntervalVariable> result;
for (IntervalVariable i(0); i < NumIntervals(); ++i) {
result.push_back(i);
}
return result;
}
private:
// External classes needed.
Model* model_;
const VariablesAssignment& assignment_;
IntegerTrail* integer_trail_;
// Literal indicating if the tasks is executed. Tasks that are always executed
// will have a kNoLiteralIndex entry in this vector.
absl::StrongVector<IntervalVariable, LiteralIndex> is_present_;
// The integer variables for each tasks.
absl::StrongVector<IntervalVariable, AffineExpression> starts_;
absl::StrongVector<IntervalVariable, AffineExpression> ends_;
absl::StrongVector<IntervalVariable, AffineExpression> sizes_;
DISALLOW_COPY_AND_ASSIGN(IntervalsRepository);
};
// An helper struct to sort task by time. This is used by the
// SchedulingConstraintHelper but also by many scheduling propagators to sort
// tasks.
struct TaskTime {
int task_index;
IntegerValue time;
bool operator<(TaskTime other) const { return time < other.time; }
bool operator>(TaskTime other) const { return time > other.time; }
};
// Helper class shared by the propagators that manage a given list of tasks.
//
// One of the main advantage of this class is that it allows to share the
// vectors of tasks sorted by various criteria between propagator for a faster
// code.
class SchedulingConstraintHelper : public PropagatorInterface,
ReversibleInterface {
public:
// All the functions below refer to a task by its index t in the tasks
// vector given at construction.
SchedulingConstraintHelper(const std::vector<IntervalVariable>& tasks,
Model* model);
// Temporary constructor.
// The class will not be usable until ResetFromSubset() is called.
//
// TODO(user): Remove this. It is a hack because the disjunctive class needs
// to fetch the maximum possible number of task at construction.
SchedulingConstraintHelper(int num_tasks, Model* model);
// This is a propagator so we can "cache" all the intervals relevant
// information. This gives good speedup. Note however that the info is stale
// except if a bound was pushed by this helper or if this was called. We run
// it at the highest priority, so that will mostly be the case at the
// beginning of each Propagate() call of the classes using this.
bool Propagate() final;
bool IncrementalPropagate(const std::vector<int>& watch_indices) final;
void RegisterWith(GenericLiteralWatcher* watcher);
void SetLevel(int level) final;
// Resets the class to the same state as if it was constructed with
// the given subset of tasks from other.
ABSL_MUST_USE_RESULT bool ResetFromSubset(
const SchedulingConstraintHelper& other, absl::Span<const int> tasks);
// Returns the number of task.
int NumTasks() const { return starts_.size(); }
// Make sure the cached values are up to date. Also sets the time direction to
// either forward/backward. This will impact all the functions below. This
// MUST be called at the beginning of all Propagate() call that uses this
// helper.
void SetTimeDirection(bool is_forward);
ABSL_MUST_USE_RESULT bool SynchronizeAndSetTimeDirection(bool is_forward);
// Helpers for the current bounds on the current task time window.
// [ (size-min) ... (size-min) ]
// ^ ^ ^ ^
// start-min end-min start-max end-max
//
// Note that for tasks with variable durations, we don't necessarily have
// duration-min between the XXX-min and XXX-max value.
//
// Remark: We use cached values for most of these function as this is faster.
// In practice, the cache will almost always be up to date, but not in corner
// cases where pushing the start of one task will change values for many
// others. This is fine as the new values will be picked up as we reach the
// propagation fixed point.
IntegerValue SizeMin(int t) const { return cached_size_min_[t]; }
IntegerValue SizeMax(int t) const {
// This one is "rare" so we don't cache it.
return integer_trail_->UpperBound(sizes_[t]);
}
IntegerValue StartMin(int t) const { return cached_start_min_[t]; }
IntegerValue EndMin(int t) const { return cached_end_min_[t]; }
IntegerValue StartMax(int t) const { return -cached_negated_start_max_[t]; }
IntegerValue EndMax(int t) const { return -cached_negated_end_max_[t]; }
// In the presence of tasks with a variable size, we do not necessarily
// have start_min + size_min = end_min, we can instead have a situation
// like:
// | |<--- size-min --->|
// ^ ^ ^
// start-min | end-min
// |
// We define the "shifted start min" to be the right most time such that
// we known that we must have min-size "energy" to the right of it if the
// task is present. Using it in our scheduling propagators allows to propagate
// more in the presence of tasks with variable size (or optional task
// where we also do not necessarily have start_min + size_min = end_min.
//
// To explain this shifted start min, one must use the AddEnergyAfterReason().
IntegerValue ShiftedStartMin(int t) const {
return cached_shifted_start_min_[t];
}
// As with ShiftedStartMin(), we can compute the shifted end max (that is
// start_max + size_min.
IntegerValue ShiftedEndMax(int t) const {
return -cached_negated_shifted_end_max_[t];
}
bool StartIsFixed(int t) const;
bool EndIsFixed(int t) const;
bool SizeIsFixed(int t) const;
// Returns true if the corresponding fact is known for sure. A normal task is
// always present. For optional task for which the presence is still unknown,
// both of these function will return false.
bool IsOptional(int t) const;
bool IsPresent(int t) const;
bool IsAbsent(int t) const;
// Return the minimum overlap of interval i with the time window [start..end].
//
// Note: this is different from the mandatory part of an interval.
IntegerValue GetMinOverlap(int t, IntegerValue start, IntegerValue end) const;
// Returns a string with the current task bounds.
std::string TaskDebugString(int t) const;
// Sorts and returns the tasks in corresponding order at the time of the call.
// Note that we do not mean strictly-increasing/strictly-decreasing, there
// will be duplicate time values in these vectors.
//
// TODO(user): we could merge the first loop of IncrementalSort() with the
// loop that fill TaskTime.time at each call.
const std::vector<TaskTime>& TaskByIncreasingStartMin();
const std::vector<TaskTime>& TaskByIncreasingEndMin();
const std::vector<TaskTime>& TaskByDecreasingStartMax();
const std::vector<TaskTime>& TaskByDecreasingEndMax();
const std::vector<TaskTime>& TaskByIncreasingShiftedStartMin();
// Functions to clear and then set the current reason.
void ClearReason();
void AddPresenceReason(int t);
void AddAbsenceReason(int t);
void AddSizeMinReason(int t);
void AddSizeMinReason(int t, IntegerValue lower_bound);
void AddSizeMaxReason(int t, IntegerValue upper_bound);
void AddStartMinReason(int t, IntegerValue lower_bound);
void AddStartMaxReason(int t, IntegerValue upper_bound);
void AddEndMinReason(int t, IntegerValue lower_bound);
void AddEndMaxReason(int t, IntegerValue upper_bound);
void AddEnergyAfterReason(int t, IntegerValue energy_min, IntegerValue time);
void AddEnergyMinInIntervalReason(int t, IntegerValue min, IntegerValue max);
// Adds the reason why task "before" must be before task "after".
// That is StartMax(before) < EndMin(after).
void AddReasonForBeingBefore(int before, int after);
// It is also possible to directly manipulates the underlying reason vectors
// that will be used when pushing something.
std::vector<Literal>* MutableLiteralReason() { return &literal_reason_; }
std::vector<IntegerLiteral>* MutableIntegerReason() {
return &integer_reason_;
}
// Push something using the current reason. Note that IncreaseStartMin() will
// also increase the end-min, and DecreaseEndMax() will also decrease the
// start-max.
//
// Important: IncreaseStartMin() and DecreaseEndMax() can be called on an
// optional interval whose presence is still unknown and push a bound
// conditionned on its presence. The functions will do the correct thing
// depending on whether or not the start_min/end_max are optional variables
// whose presence implies the interval presence.
ABSL_MUST_USE_RESULT bool IncreaseStartMin(int t, IntegerValue new_start_min);
ABSL_MUST_USE_RESULT bool DecreaseEndMax(int t, IntegerValue new_end_max);
ABSL_MUST_USE_RESULT bool PushTaskAbsence(int t);
ABSL_MUST_USE_RESULT bool PushTaskPresence(int t);
ABSL_MUST_USE_RESULT bool PushIntegerLiteral(IntegerLiteral lit);
ABSL_MUST_USE_RESULT bool ReportConflict();
ABSL_MUST_USE_RESULT bool PushIntegerLiteralIfTaskPresent(int t,
IntegerLiteral lit);
// Returns the underlying affine expressions.
const std::vector<AffineExpression>& Starts() const { return starts_; }
const std::vector<AffineExpression>& Ends() const { return ends_; }
const std::vector<AffineExpression>& Sizes() const { return sizes_; }
Literal PresenceLiteral(int index) const {
DCHECK(IsOptional(index));
return Literal(reason_for_presence_[index]);
}
// Registers the given propagator id to be called if any of the tasks
// in this class change. Note that we do not watch size max though.
void WatchAllTasks(int id, GenericLiteralWatcher* watcher,
bool watch_start_max = true,
bool watch_end_max = true) const;
// Manages the other helper (used by the diffn constraint).
//
// For each interval appearing in a reason on this helper, another reason
// will be added. This other reason specifies that on the other helper, the
// corresponding interval overlaps 'event'.
void SetOtherHelper(SchedulingConstraintHelper* other_helper,
absl::Span<const int> map_to_other_helper,
IntegerValue event) {
CHECK(other_helper != nullptr);
other_helper_ = other_helper;
map_to_other_helper_ = map_to_other_helper;
event_for_other_helper_ = event;
}
void ClearOtherHelper() { other_helper_ = nullptr; }
// Adds to this helper reason all the explanation of the other helper.
// This checks that other_helper_ is null.
//
// This is used in the 2D energetic reasoning in the diffn constraint.
void ImportOtherReasons(const SchedulingConstraintHelper& other_helper);
// TODO(user): Change the propagation loop code so that we don't stop
// pushing in the middle of the propagation as more advanced propagator do
// not handle this correctly.
bool InPropagationLoop() const { return integer_trail_->InPropagationLoop(); }
private:
// Generic reason for a <= upper_bound, given that a = b + c in case the
// current upper bound of a is not good enough.
void AddGenericReason(const AffineExpression& a, IntegerValue upper_bound,
const AffineExpression& b, const AffineExpression& c);
void InitSortedVectors();
ABSL_MUST_USE_RESULT bool UpdateCachedValues(int t);
// Internal function for IncreaseStartMin()/DecreaseEndMax().
bool PushIntervalBound(int t, IntegerLiteral lit);
// This will be called on any interval that is part of a reason or
// a bound push. Since the last call to ClearReason(), for each unique
// t, we will add once to other_helper_ the reason for t containing
// the point event_for_other_helper_.
void AddOtherReason(int t);
// Import the reasons on the other helper into this helper.
void ImportOtherReasons();
Trail* trail_;
IntegerTrail* integer_trail_;
PrecedencesPropagator* precedences_;
// The current direction of time, true for forward, false for backward.
bool current_time_direction_ = true;
// All the underlying variables of the tasks.
// The vectors are indexed by the task index t.
std::vector<AffineExpression> starts_;
std::vector<AffineExpression> ends_;
std::vector<AffineExpression> sizes_;
std::vector<LiteralIndex> reason_for_presence_;
// The negation of the start/end variable so that SetTimeDirection()
// can do its job in O(1) instead of calling NegationOf() on each entry.
std::vector<AffineExpression> minus_starts_;
std::vector<AffineExpression> minus_ends_;
// This is used by SetLevel() to dected untrail.
int previous_level_ = 0;
// The caches of all relevant interval values.
std::vector<IntegerValue> cached_size_min_;
std::vector<IntegerValue> cached_start_min_;
std::vector<IntegerValue> cached_end_min_;
std::vector<IntegerValue> cached_negated_start_max_;
std::vector<IntegerValue> cached_negated_end_max_;
std::vector<IntegerValue> cached_shifted_start_min_;
std::vector<IntegerValue> cached_negated_shifted_end_max_;
// Sorted vectors returned by the TasksBy*() functions.
std::vector<TaskTime> task_by_increasing_start_min_;
std::vector<TaskTime> task_by_increasing_end_min_;
std::vector<TaskTime> task_by_decreasing_start_max_;
std::vector<TaskTime> task_by_decreasing_end_max_;
// This one is the most commonly used, so we optimized a bit more its
// computation by detecting when there is nothing to do.
std::vector<TaskTime> task_by_increasing_shifted_start_min_;
std::vector<TaskTime> task_by_negated_shifted_end_max_;
bool recompute_shifted_start_min_ = true;
bool recompute_negated_shifted_end_max_ = true;
// If recompute_cache_[t] is true, then we need to update all the cached
// value for the task t in SynchronizeAndSetTimeDirection().
bool recompute_all_cache_ = true;
std::vector<bool> recompute_cache_;
// Reason vectors.
std::vector<Literal> literal_reason_;
std::vector<IntegerLiteral> integer_reason_;
// Optional 'proxy' helper used in the diffn constraint.
SchedulingConstraintHelper* other_helper_ = nullptr;
absl::Span<const int> map_to_other_helper_;
IntegerValue event_for_other_helper_;
std::vector<bool> already_added_to_other_reasons_;
};
// =============================================================================
// SchedulingConstraintHelper inlined functions.
// =============================================================================
inline bool SchedulingConstraintHelper::StartIsFixed(int t) const {
return integer_trail_->IsFixed(starts_[t]);
}
inline bool SchedulingConstraintHelper::EndIsFixed(int t) const {
return integer_trail_->IsFixed(ends_[t]);
}
inline bool SchedulingConstraintHelper::SizeIsFixed(int t) const {
return integer_trail_->IsFixed(sizes_[t]);
}
inline bool SchedulingConstraintHelper::IsOptional(int t) const {
return reason_for_presence_[t] != kNoLiteralIndex;
}
inline bool SchedulingConstraintHelper::IsPresent(int t) const {
if (reason_for_presence_[t] == kNoLiteralIndex) return true;
return trail_->Assignment().LiteralIsTrue(Literal(reason_for_presence_[t]));
}
inline bool SchedulingConstraintHelper::IsAbsent(int t) const {
if (reason_for_presence_[t] == kNoLiteralIndex) return false;
return trail_->Assignment().LiteralIsFalse(Literal(reason_for_presence_[t]));
}
inline void SchedulingConstraintHelper::ClearReason() {
integer_reason_.clear();
literal_reason_.clear();
if (other_helper_) {
other_helper_->ClearReason();
already_added_to_other_reasons_.assign(NumTasks(), false);
}
}
inline void SchedulingConstraintHelper::AddPresenceReason(int t) {
DCHECK(IsPresent(t));
AddOtherReason(t);
if (reason_for_presence_[t] != kNoLiteralIndex) {
literal_reason_.push_back(Literal(reason_for_presence_[t]).Negated());
}
}
inline void SchedulingConstraintHelper::AddAbsenceReason(int t) {
DCHECK(IsAbsent(t));
AddOtherReason(t);
if (reason_for_presence_[t] != kNoLiteralIndex) {
literal_reason_.push_back(Literal(reason_for_presence_[t]));
}
}
inline void SchedulingConstraintHelper::AddSizeMinReason(int t) {
AddSizeMinReason(t, SizeMin(t));
}
inline void SchedulingConstraintHelper::AddGenericReason(
const AffineExpression& a, IntegerValue upper_bound,
const AffineExpression& b, const AffineExpression& c) {
if (integer_trail_->UpperBound(a) <= upper_bound) {
if (a.var != kNoIntegerVariable) {
integer_reason_.push_back(a.LowerOrEqual(upper_bound));
}
return;
}
CHECK_NE(a.var, kNoIntegerVariable);
// Here we assume that the upper_bound on a comes from the bound on b + c.
const IntegerValue slack = upper_bound - integer_trail_->UpperBound(b) -
integer_trail_->UpperBound(c);
CHECK_GE(slack, 0);
if (b.var == kNoIntegerVariable && c.var == kNoIntegerVariable) return;
if (b.var == kNoIntegerVariable) {
integer_reason_.push_back(c.LowerOrEqual(upper_bound - b.constant));
} else if (c.var == kNoIntegerVariable) {
integer_reason_.push_back(b.LowerOrEqual(upper_bound - c.constant));
} else {
integer_trail_->AppendRelaxedLinearReason(
slack, {b.coeff, c.coeff}, {NegationOf(b.var), NegationOf(c.var)},
&integer_reason_);
}
}
inline void SchedulingConstraintHelper::AddSizeMinReason(
int t, IntegerValue lower_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
if (lower_bound <= 0) return;
AddGenericReason(sizes_[t].Negated(), -lower_bound, minus_ends_[t],
starts_[t]);
}
inline void SchedulingConstraintHelper::AddSizeMaxReason(
int t, IntegerValue upper_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
AddGenericReason(sizes_[t], upper_bound, ends_[t], minus_starts_[t]);
}
inline void SchedulingConstraintHelper::AddStartMinReason(
int t, IntegerValue lower_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
AddGenericReason(minus_starts_[t], -lower_bound, minus_ends_[t], sizes_[t]);
}
inline void SchedulingConstraintHelper::AddStartMaxReason(
int t, IntegerValue upper_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
AddGenericReason(starts_[t], upper_bound, ends_[t], sizes_[t].Negated());
}
inline void SchedulingConstraintHelper::AddEndMinReason(
int t, IntegerValue lower_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
AddGenericReason(minus_ends_[t], -lower_bound, minus_starts_[t],
sizes_[t].Negated());
}
inline void SchedulingConstraintHelper::AddEndMaxReason(
int t, IntegerValue upper_bound) {
AddOtherReason(t);
DCHECK(!IsAbsent(t));
AddGenericReason(ends_[t], upper_bound, starts_[t], sizes_[t]);
}
inline void SchedulingConstraintHelper::AddEnergyAfterReason(
int t, IntegerValue energy_min, IntegerValue time) {
if (StartMin(t) >= time) {
AddStartMinReason(t, time);
} else {
AddEndMinReason(t, time + energy_min);
}
AddSizeMinReason(t, energy_min);
}
inline void SchedulingConstraintHelper::AddEnergyMinInIntervalReason(
int t, IntegerValue time_min, IntegerValue time_max) {
const IntegerValue energy_min = SizeMin(t);
CHECK_LE(time_min + energy_min, time_max);
if (StartMin(t) >= time_min) {
AddStartMinReason(t, time_min);
} else {
AddEndMinReason(t, time_min + energy_min);
}
if (EndMax(t) <= time_max) {
AddEndMaxReason(t, time_max);
} else {
AddStartMaxReason(t, time_max - energy_min);
}
AddSizeMinReason(t, energy_min);
}
// =============================================================================
// Model based functions.
// =============================================================================
inline std::function<IntegerVariable(const Model&)> StartVar(
IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->StartVar(v);
};
}
inline std::function<IntegerVariable(const Model&)> EndVar(IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->EndVar(v);
};
}
inline std::function<IntegerVariable(const Model&)> SizeVar(
IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->SizeVar(v);
};
}
inline std::function<int64_t(const Model&)> MinSize(IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->MinSize(v).value();
};
}
inline std::function<int64_t(const Model&)> MaxSize(IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->MaxSize(v).value();
};
}
inline std::function<bool(const Model&)> IsOptional(IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->IsOptional(v);
};
}
inline std::function<Literal(const Model&)> IsPresentLiteral(
IntervalVariable v) {
return [=](const Model& model) {
return model.Get<IntervalsRepository>()->PresenceLiteral(v);
};
}
inline std::function<IntervalVariable(Model*)> NewInterval(int64_t min_start,
int64_t max_end,
int64_t size) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_start, max_end)), kNoIntegerVariable,
IntegerValue(size), kNoLiteralIndex);
};
}
inline std::function<IntervalVariable(Model*)> NewInterval(
IntegerVariable start, IntegerVariable end, IntegerVariable size) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
start, end, size, IntegerValue(0), kNoLiteralIndex);
};
}
inline std::function<IntervalVariable(Model*)> NewIntervalWithVariableSize(
int64_t min_start, int64_t max_end, int64_t min_size, int64_t max_size) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_size, max_size)), IntegerValue(0),
kNoLiteralIndex);
};
}
inline std::function<IntervalVariable(Model*)> NewOptionalInterval(
int64_t min_start, int64_t max_end, int64_t size, Literal is_present) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_start, max_end)), kNoIntegerVariable,
IntegerValue(size), is_present.Index());
};
}
inline std::function<IntervalVariable(Model*)>
NewOptionalIntervalWithOptionalVariables(int64_t min_start, int64_t max_end,
int64_t size, Literal is_present) {
return [=](Model* model) {
// Note that we need to mark the optionality first.
const IntegerVariable start =
model->Add(NewIntegerVariable(min_start, max_end));
const IntegerVariable end =
model->Add(NewIntegerVariable(min_start, max_end));
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
integer_trail->MarkIntegerVariableAsOptional(start, is_present);
integer_trail->MarkIntegerVariableAsOptional(end, is_present);
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
start, end, kNoIntegerVariable, IntegerValue(size), is_present.Index());
};
}
inline std::function<IntervalVariable(Model*)> NewOptionalInterval(
IntegerVariable start, IntegerVariable end, IntegerVariable size,
Literal is_present) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
start, end, size, IntegerValue(0), is_present.Index());
};
}
inline std::function<IntervalVariable(Model*)>
NewOptionalIntervalWithVariableSize(int64_t min_start, int64_t max_end,
int64_t min_size, int64_t max_size,
Literal is_present) {
return [=](Model* model) {
return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_start, max_end)),
model->Add(NewIntegerVariable(min_size, max_size)), IntegerValue(0),
is_present.Index());
};
}
// This requires that all the alternatives are optional tasks.
inline std::function<void(Model*)> IntervalWithAlternatives(
IntervalVariable parent, const std::vector<IntervalVariable>& members) {
return [=](Model* model) {
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* intervals = model->GetOrCreate<IntervalsRepository>();
std::vector<Literal> presences;
std::vector<IntegerValue> sizes;
// Create an "exactly one executed" constraint on the alternatives.
std::vector<LiteralWithCoeff> sat_ct;
for (const IntervalVariable member : members) {
CHECK(intervals->IsOptional(member));
const Literal is_present = intervals->PresenceLiteral(member);
sat_ct.push_back({is_present, Coefficient(1)});
model->Add(
Equality(model->Get(StartVar(parent)), model->Get(StartVar(member))));
model->Add(
Equality(model->Get(EndVar(parent)), model->Get(EndVar(member))));
// TODO(user): IsOneOf() only work for members with fixed size.
// Generalize to an "int_var_element" constraint.
CHECK(integer_trail->IsFixed(intervals->Size(member)));
presences.push_back(is_present);
sizes.push_back(intervals->MinSize(member));
}
if (intervals->SizeVar(parent) != kNoIntegerVariable) {
model->Add(IsOneOf(intervals->SizeVar(parent), presences, sizes));
}
model->Add(BooleanLinearConstraint(1, 1, &sat_ct));
// Propagate from the candidate bounds to the parent interval ones.
{
std::vector<IntegerVariable> starts;
starts.reserve(members.size());
for (const IntervalVariable member : members) {
starts.push_back(intervals->StartVar(member));
}
model->Add(
PartialIsOneOfVar(intervals->StartVar(parent), starts, presences));
}
{
std::vector<IntegerVariable> ends;
ends.reserve(members.size());
for (const IntervalVariable member : members) {
ends.push_back(intervals->EndVar(member));
}
model->Add(PartialIsOneOfVar(intervals->EndVar(parent), ends, presences));
}
};
}
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_INTERVALS_H_