forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisjunctive.h
312 lines (259 loc) · 11.1 KB
/
disjunctive.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_DISJUNCTIVE_H_
#define OR_TOOLS_SAT_DISJUNCTIVE_H_
#include <algorithm>
#include <functional>
#include <vector>
#include "ortools/base/macros.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/model.h"
#include "ortools/sat/precedences.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/theta_tree.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
// Enforces a disjunctive (or no overlap) constraint on the given interval
// variables. The intervals are interpreted as [start, end) and the constraint
// enforces that no time point belongs to two intervals.
//
// TODO(user): This is not completely true for empty intervals (start == end).
// Make sure such intervals are ignored by the constraint.
std::function<void(Model*)> Disjunctive(
const std::vector<IntervalVariable>& vars);
// Creates Boolean variables for all the possible precedences of the form (task
// i is before task j) and forces that, for each couple of task (i,j), either i
// is before j or j is before i. Do not create any other propagators.
std::function<void(Model*)> DisjunctiveWithBooleanPrecedencesOnly(
const std::vector<IntervalVariable>& vars);
// Same as Disjunctive() + DisjunctiveWithBooleanPrecedencesOnly().
std::function<void(Model*)> DisjunctiveWithBooleanPrecedences(
const std::vector<IntervalVariable>& vars);
// Helper class to compute the end-min of a set of tasks given their start-min
// and size-min. In Petr Vilim's PhD "Global Constraints in Scheduling",
// this corresponds to his Theta-tree except that we use a O(n) implementation
// for most of the function here, not a O(log(n)) one.
class TaskSet {
public:
explicit TaskSet(int num_tasks) { sorted_tasks_.reserve(num_tasks); }
struct Entry {
int task;
IntegerValue start_min;
IntegerValue size_min;
// Note that the tie-breaking is not important here.
bool operator<(Entry other) const { return start_min < other.start_min; }
};
// Insertion and modification. These leave sorted_tasks_ sorted.
void Clear() {
sorted_tasks_.clear();
optimized_restart_ = 0;
}
void AddEntry(const Entry& e);
void RemoveEntryWithIndex(int index);
// Same as AddEntry({t, helper->ShiftedStartMin(t), helper->SizeMin(t)}).
// This is a minor optimization to not call SizeMin(t) twice.
void AddShiftedStartMinEntry(const SchedulingConstraintHelper& helper, int t);
// Advanced usage, if the entry is present, this assumes that its start_min is
// >= the end min without it, and update the datastructure accordingly.
void NotifyEntryIsNowLastIfPresent(const Entry& e);
// Advanced usage. Instead of calling many AddEntry(), it is more efficient to
// call AddUnsortedEntry() instead, but then Sort() MUST be called just after
// the insertions. Nothing is checked here, so it is up to the client to do
// that properly.
void AddUnsortedEntry(const Entry& e) { sorted_tasks_.push_back(e); }
void Sort() { std::sort(sorted_tasks_.begin(), sorted_tasks_.end()); }
// Returns the end-min for the task in the set. The time profile of the tasks
// packed to the left will always be a set of contiguous tasks separated by
// empty space:
//
// [Bunch of tasks] ... [Bunch of tasks] ... [critical tasks].
//
// We call "critical tasks" the last group. These tasks will be solely
// responsible for for the end-min of the whole set. The returned
// critical_index will be the index of the first critical task in
// SortedTasks().
//
// A reason for the min end is:
// - The size-min of all the critical tasks.
// - The fact that all critical tasks have a start-min greater or equal to the
// first of them, that is SortedTasks()[critical_index].start_min.
//
// It is possible to behave like if one task was not in the set by setting
// task_to_ignore to the id of this task. This returns 0 if the set is empty
// in which case critical_index will be left unchanged.
IntegerValue ComputeEndMin(int task_to_ignore, int* critical_index) const;
IntegerValue ComputeEndMin() const;
// Warning, this is only valid if ComputeEndMin() was just called. It is the
// same index as if one called ComputeEndMin(-1, &critical_index), but saves
// another unneeded loop.
int GetCriticalIndex() const { return optimized_restart_; }
const std::vector<Entry>& SortedTasks() const { return sorted_tasks_; }
private:
std::vector<Entry> sorted_tasks_;
mutable int optimized_restart_ = 0;
};
// ============================================================================
// Below are many of the known propagation techniques for the disjunctive, each
// implemented in only one time direction and in its own propagator class. The
// Disjunctive() model function above will instantiate the used ones (according
// to the solver parameters) in both time directions.
//
// See Petr Vilim PhD "Global Constraints in Scheduling" for a description of
// some of the algorithm.
// ============================================================================
class DisjunctiveOverloadChecker : public PropagatorInterface {
public:
explicit DisjunctiveOverloadChecker(SchedulingConstraintHelper* helper)
: helper_(helper) {
// Resize this once and for all.
task_to_event_.resize(helper_->NumTasks());
}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSubwindow(IntegerValue global_window_end);
SchedulingConstraintHelper* helper_;
std::vector<TaskTime> window_;
std::vector<TaskTime> task_by_increasing_end_max_;
ThetaLambdaTree<IntegerValue> theta_tree_;
std::vector<int> task_to_event_;
};
class DisjunctiveDetectablePrecedences : public PropagatorInterface {
public:
DisjunctiveDetectablePrecedences(bool time_direction,
SchedulingConstraintHelper* helper)
: time_direction_(time_direction),
helper_(helper),
task_set_(helper->NumTasks()) {}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSubwindow();
std::vector<TaskTime> task_by_increasing_end_min_;
std::vector<TaskTime> task_by_increasing_start_max_;
std::vector<bool> processed_;
std::vector<int> to_propagate_;
const bool time_direction_;
SchedulingConstraintHelper* helper_;
TaskSet task_set_;
};
// Singleton model class which is just a SchedulingConstraintHelper will all
// the intervals.
class AllIntervalsHelper : public SchedulingConstraintHelper {
public:
explicit AllIntervalsHelper(Model* model)
: SchedulingConstraintHelper(
model->GetOrCreate<IntervalsRepository>()->AllIntervals(), model) {}
};
// This propagates the same things as DisjunctiveDetectablePrecedences, except
// that it only sort the full set of intervals once and then work on a combined
// set of disjunctives.
template <bool time_direction>
class CombinedDisjunctive : public PropagatorInterface {
public:
explicit CombinedDisjunctive(Model* model);
// After creation, this must be called for all the disjunctive constraints
// in the model.
void AddNoOverlap(const std::vector<IntervalVariable>& var);
bool Propagate() final;
private:
AllIntervalsHelper* helper_;
std::vector<std::vector<int>> task_to_disjunctives_;
std::vector<bool> task_is_added_;
std::vector<TaskSet> task_sets_;
std::vector<IntegerValue> end_mins_;
};
class DisjunctiveNotLast : public PropagatorInterface {
public:
DisjunctiveNotLast(bool time_direction, SchedulingConstraintHelper* helper)
: time_direction_(time_direction),
helper_(helper),
task_set_(helper->NumTasks()) {}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSubwindow();
std::vector<TaskTime> start_min_window_;
std::vector<TaskTime> start_max_window_;
const bool time_direction_;
SchedulingConstraintHelper* helper_;
TaskSet task_set_;
};
class DisjunctiveEdgeFinding : public PropagatorInterface {
public:
DisjunctiveEdgeFinding(bool time_direction,
SchedulingConstraintHelper* helper)
: time_direction_(time_direction), helper_(helper) {}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSubwindow(IntegerValue window_end_min);
const bool time_direction_;
SchedulingConstraintHelper* helper_;
// This only contains non-gray tasks.
std::vector<TaskTime> task_by_increasing_end_max_;
// All these member are indexed in the same way.
std::vector<TaskTime> window_;
ThetaLambdaTree<IntegerValue> theta_tree_;
std::vector<IntegerValue> event_size_;
// Task indexed.
std::vector<int> non_gray_task_to_event_;
std::vector<bool> is_gray_;
};
// Exploits the precedences relations of the form "this set of disjoint
// IntervalVariables must be performed before a given IntegerVariable". The
// relations are computed with PrecedencesPropagator::ComputePrecedences().
class DisjunctivePrecedences : public PropagatorInterface {
public:
DisjunctivePrecedences(bool time_direction,
SchedulingConstraintHelper* helper,
IntegerTrail* integer_trail,
PrecedencesPropagator* precedences)
: time_direction_(time_direction),
helper_(helper),
integer_trail_(integer_trail),
precedences_(precedences),
task_set_(helper->NumTasks()),
task_to_arc_index_(helper->NumTasks()) {}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSubwindow();
const bool time_direction_;
SchedulingConstraintHelper* helper_;
IntegerTrail* integer_trail_;
PrecedencesPropagator* precedences_;
std::vector<TaskTime> window_;
std::vector<IntegerVariable> index_to_end_vars_;
TaskSet task_set_;
std::vector<int> task_to_arc_index_;
std::vector<PrecedencesPropagator::IntegerPrecedences> before_;
};
// This is an optimization for the case when we have a big number of such
// pairwise constraints. This should be roughtly equivalent to what the general
// disjunctive case is doing, but it dealt with variable size better and has a
// lot less overhead.
class DisjunctiveWithTwoItems : public PropagatorInterface {
public:
explicit DisjunctiveWithTwoItems(SchedulingConstraintHelper* helper)
: helper_(helper) {}
bool Propagate() final;
int RegisterWith(GenericLiteralWatcher* watcher);
private:
SchedulingConstraintHelper* helper_;
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_DISJUNCTIVE_H_