forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffn_util.cc
606 lines (535 loc) · 21.8 KB
/
diffn_util.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/diffn_util.h"
#include <stddef.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "absl/random/bit_gen_ref.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/base/stl_util.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/intervals.h"
#include "ortools/util/integer_pq.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
bool Rectangle::IsDisjoint(const Rectangle& other) const {
return x_min >= other.x_max || other.x_min >= x_max || y_min >= other.y_max ||
other.y_min >= y_max;
}
std::vector<absl::Span<int>> GetOverlappingRectangleComponents(
const std::vector<Rectangle>& rectangles,
absl::Span<int> active_rectangles) {
if (active_rectangles.empty()) return {};
std::vector<absl::Span<int>> result;
const int size = active_rectangles.size();
for (int start = 0; start < size;) {
// Find the component of active_rectangles[start].
int end = start + 1;
for (int i = start; i < end; i++) {
for (int j = end; j < size; ++j) {
if (!rectangles[active_rectangles[i]].IsDisjoint(
rectangles[active_rectangles[j]])) {
std::swap(active_rectangles[end++], active_rectangles[j]);
}
}
}
if (end > start + 1) {
result.push_back(active_rectangles.subspan(start, end - start));
}
start = end;
}
return result;
}
bool ReportEnergyConflict(Rectangle bounding_box, absl::Span<const int> boxes,
SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y) {
x->ClearReason();
y->ClearReason();
IntegerValue total_energy(0);
for (const int b : boxes) {
const IntegerValue x_min = x->ShiftedStartMin(b);
const IntegerValue x_max = x->ShiftedEndMax(b);
if (x_min < bounding_box.x_min || x_max > bounding_box.x_max) continue;
const IntegerValue y_min = y->ShiftedStartMin(b);
const IntegerValue y_max = y->ShiftedEndMax(b);
if (y_min < bounding_box.y_min || y_max > bounding_box.y_max) continue;
x->AddEnergyMinInIntervalReason(b, bounding_box.x_min, bounding_box.x_max);
y->AddEnergyMinInIntervalReason(b, bounding_box.y_min, bounding_box.y_max);
x->AddPresenceReason(b);
y->AddPresenceReason(b);
total_energy += x->SizeMin(b) * y->SizeMin(b);
// We abort early if a subset of boxes is enough.
// TODO(user): Also relax the box if possible.
if (total_energy > bounding_box.Area()) break;
}
CHECK_GT(total_energy, bounding_box.Area());
x->ImportOtherReasons(*y);
return x->ReportConflict();
}
bool BoxesAreInEnergyConflict(const std::vector<Rectangle>& rectangles,
const std::vector<IntegerValue>& energies,
absl::Span<const int> boxes,
Rectangle* conflict) {
// First consider all relevant intervals along the x axis.
std::vector<IntegerValue> x_starts;
std::vector<TaskTime> boxes_by_increasing_x_max;
for (const int b : boxes) {
x_starts.push_back(rectangles[b].x_min);
boxes_by_increasing_x_max.push_back({b, rectangles[b].x_max});
}
gtl::STLSortAndRemoveDuplicates(&x_starts);
std::sort(boxes_by_increasing_x_max.begin(), boxes_by_increasing_x_max.end());
std::vector<IntegerValue> y_starts;
std::vector<IntegerValue> energy_sum;
std::vector<TaskTime> boxes_by_increasing_y_max;
std::vector<std::vector<int>> stripes(x_starts.size());
for (int i = 0; i < boxes_by_increasing_x_max.size(); ++i) {
const int b = boxes_by_increasing_x_max[i].task_index;
const IntegerValue x_min = rectangles[b].x_min;
const IntegerValue x_max = rectangles[b].x_max;
for (int j = 0; j < x_starts.size(); ++j) {
if (x_starts[j] > x_min) break;
stripes[j].push_back(b);
// Redo the same on the y coordinate for the current x interval
// which is [starts[j], x_max].
y_starts.clear();
boxes_by_increasing_y_max.clear();
for (const int b : stripes[j]) {
y_starts.push_back(rectangles[b].y_min);
boxes_by_increasing_y_max.push_back({b, rectangles[b].y_max});
}
gtl::STLSortAndRemoveDuplicates(&y_starts);
std::sort(boxes_by_increasing_y_max.begin(),
boxes_by_increasing_y_max.end());
const IntegerValue x_size = x_max - x_starts[j];
energy_sum.assign(y_starts.size(), IntegerValue(0));
for (int i = 0; i < boxes_by_increasing_y_max.size(); ++i) {
const int b = boxes_by_increasing_y_max[i].task_index;
const IntegerValue y_min = rectangles[b].y_min;
const IntegerValue y_max = rectangles[b].y_max;
for (int j = 0; j < y_starts.size(); ++j) {
if (y_starts[j] > y_min) break;
energy_sum[j] += energies[b];
if (energy_sum[j] > x_size * (y_max - y_starts[j])) {
if (conflict != nullptr) {
*conflict = rectangles[b];
for (int k = 0; k < i; ++k) {
const int task_index = boxes_by_increasing_y_max[k].task_index;
if (rectangles[task_index].y_min >= y_starts[j]) {
conflict->TakeUnionWith(rectangles[task_index]);
}
}
}
return true;
}
}
}
}
}
return false;
}
bool AnalyzeIntervals(bool transpose, absl::Span<const int> local_boxes,
const std::vector<Rectangle>& rectangles,
const std::vector<IntegerValue>& rectangle_energies,
IntegerValue* x_threshold, IntegerValue* y_threshold,
Rectangle* conflict) {
// First, we compute the possible x_min values (removing duplicates).
// We also sort the relevant tasks by their x_max.
//
// TODO(user): If the number of unique x_max is smaller than the number of
// unique x_min, it is better to do it the other way around.
std::vector<IntegerValue> starts;
std::vector<TaskTime> task_by_increasing_x_max;
for (const int t : local_boxes) {
const IntegerValue x_min =
transpose ? rectangles[t].y_min : rectangles[t].x_min;
const IntegerValue x_max =
transpose ? rectangles[t].y_max : rectangles[t].x_max;
starts.push_back(x_min);
task_by_increasing_x_max.push_back({t, x_max});
}
gtl::STLSortAndRemoveDuplicates(&starts);
// Note that for the same end_max, the order change our heuristic to
// evaluate the max_conflict_height.
std::sort(task_by_increasing_x_max.begin(), task_by_increasing_x_max.end());
// The maximum y dimension of a bounding area for which there is a potential
// conflict.
IntegerValue max_conflict_height(0);
// This is currently only used for logging.
absl::flat_hash_set<std::pair<IntegerValue, IntegerValue>> stripes;
// All quantities at index j correspond to the interval [starts[j], x_max].
std::vector<IntegerValue> energies(starts.size(), IntegerValue(0));
std::vector<IntegerValue> y_mins(starts.size(), kMaxIntegerValue);
std::vector<IntegerValue> y_maxs(starts.size(), -kMaxIntegerValue);
std::vector<IntegerValue> energy_at_max_y(starts.size(), IntegerValue(0));
std::vector<IntegerValue> energy_at_min_y(starts.size(), IntegerValue(0));
// Sentinel.
starts.push_back(kMaxIntegerValue);
// Iterate over all boxes by increasing x_max values.
int first_j = 0;
const IntegerValue threshold = transpose ? *y_threshold : *x_threshold;
for (int i = 0; i < task_by_increasing_x_max.size(); ++i) {
const int t = task_by_increasing_x_max[i].task_index;
const IntegerValue energy = rectangle_energies[t];
IntegerValue x_min = rectangles[t].x_min;
IntegerValue x_max = rectangles[t].x_max;
IntegerValue y_min = rectangles[t].y_min;
IntegerValue y_max = rectangles[t].y_max;
if (transpose) {
std::swap(x_min, y_min);
std::swap(x_max, y_max);
}
// Add this box contribution to all the [starts[j], x_max] intervals.
while (first_j + 1 < starts.size() && x_max - starts[first_j] > threshold) {
++first_j;
}
for (int j = first_j; starts[j] <= x_min; ++j) {
const IntegerValue old_energy_at_max = energy_at_max_y[j];
const IntegerValue old_energy_at_min = energy_at_min_y[j];
energies[j] += energy;
const bool is_disjoint = y_min >= y_maxs[j] || y_max <= y_mins[j];
if (y_min <= y_mins[j]) {
if (y_min < y_mins[j]) {
y_mins[j] = y_min;
energy_at_min_y[j] = energy;
} else {
energy_at_min_y[j] += energy;
}
}
if (y_max >= y_maxs[j]) {
if (y_max > y_maxs[j]) {
y_maxs[j] = y_max;
energy_at_max_y[j] = energy;
} else {
energy_at_max_y[j] += energy;
}
}
// If the new box is disjoint in y from the ones added so far, there
// cannot be a new conflict involving this box, so we skip until we add
// new boxes.
if (is_disjoint) continue;
const IntegerValue width = x_max - starts[j];
IntegerValue conflict_height = CeilRatio(energies[j], width) - 1;
if (y_max - y_min > conflict_height) continue;
if (conflict_height >= y_maxs[j] - y_mins[j]) {
// We have a conflict.
if (conflict != nullptr) {
*conflict = rectangles[t];
for (int k = 0; k < i; ++k) {
const int task_index = task_by_increasing_x_max[k].task_index;
const IntegerValue task_x_min = transpose
? rectangles[task_index].y_min
: rectangles[task_index].x_min;
if (task_x_min < starts[j]) continue;
conflict->TakeUnionWith(rectangles[task_index]);
}
}
return false;
}
// Because we currently do not have a conflict involving the new box, the
// only way to have one is to remove enough energy to reduce the y domain.
IntegerValue can_remove = std::min(old_energy_at_min, old_energy_at_max);
if (old_energy_at_min < old_energy_at_max) {
if (y_maxs[j] - y_min >=
CeilRatio(energies[j] - old_energy_at_min, width)) {
// In this case, we need to remove at least old_energy_at_max to have
// a conflict.
can_remove = old_energy_at_max;
}
} else if (old_energy_at_max < old_energy_at_min) {
if (y_max - y_mins[j] >=
CeilRatio(energies[j] - old_energy_at_max, width)) {
can_remove = old_energy_at_min;
}
}
conflict_height = CeilRatio(energies[j] - can_remove, width) - 1;
// If the new box height is above the conflict_height, do not count
// it now. We only need to consider conflict involving the new box.
if (y_max - y_min > conflict_height) continue;
if (VLOG_IS_ON(2)) stripes.insert({starts[j], x_max});
max_conflict_height = std::max(max_conflict_height, conflict_height);
}
}
VLOG(2) << " num_starts: " << starts.size() - 1 << "/" << local_boxes.size()
<< " conflict_height: " << max_conflict_height
<< " num_stripes:" << stripes.size() << " (<= " << threshold << ")";
if (transpose) {
*x_threshold = std::min(*x_threshold, max_conflict_height);
} else {
*y_threshold = std::min(*y_threshold, max_conflict_height);
}
return true;
}
absl::Span<int> FilterBoxesAndRandomize(
const std::vector<Rectangle>& cached_rectangles, absl::Span<int> boxes,
IntegerValue threshold_x, IntegerValue threshold_y,
absl::BitGenRef random) {
size_t new_size = 0;
for (const int b : boxes) {
const Rectangle& dim = cached_rectangles[b];
if (dim.x_max - dim.x_min > threshold_x) continue;
if (dim.y_max - dim.y_min > threshold_y) continue;
boxes[new_size++] = b;
}
if (new_size == 0) return {};
std::shuffle(&boxes[0], &boxes[0] + new_size, random);
return {&boxes[0], new_size};
}
absl::Span<int> FilterBoxesThatAreTooLarge(
const std::vector<Rectangle>& cached_rectangles,
const std::vector<IntegerValue>& energies, absl::Span<int> boxes) {
// Sort the boxes by increasing area.
std::sort(boxes.begin(), boxes.end(), [&cached_rectangles](int a, int b) {
return cached_rectangles[a].Area() < cached_rectangles[b].Area();
});
IntegerValue total_energy(0);
for (const int box : boxes) total_energy += energies[box];
// Remove all the large boxes until we have one with area smaller than the
// energy of the boxes below.
int new_size = boxes.size();
while (new_size > 0 &&
cached_rectangles[boxes[new_size - 1]].Area() >= total_energy) {
--new_size;
total_energy -= energies[boxes[new_size]];
}
return boxes.subspan(0, new_size);
}
std::ostream& operator<<(std::ostream& out, const IndexedInterval& interval) {
return out << "[" << interval.start << ".." << interval.end << " (#"
<< interval.index << ")]";
}
void ConstructOverlappingSets(bool already_sorted,
std::vector<IndexedInterval>* intervals,
std::vector<std::vector<int>>* result) {
result->clear();
if (already_sorted) {
DCHECK(std::is_sorted(intervals->begin(), intervals->end(),
IndexedInterval::ComparatorByStart()));
} else {
std::sort(intervals->begin(), intervals->end(),
IndexedInterval::ComparatorByStart());
}
IntegerValue min_end_in_set = kMaxIntegerValue;
intervals->push_back({-1, kMaxIntegerValue, kMaxIntegerValue}); // Sentinel.
const int size = intervals->size();
// We do a line sweep. The "current" subset crossing the "line" at
// (time, time + 1) will be in (*intervals)[start_index, end_index) at the end
// of the loop block.
int start_index = 0;
for (int end_index = 0; end_index < size;) {
const IntegerValue time = (*intervals)[end_index].start;
// First, if there is some deletion, we will push the "old" set to the
// result before updating it. Otherwise, we will have a superset later, so
// we just continue for now.
if (min_end_in_set <= time) {
result->push_back({});
min_end_in_set = kMaxIntegerValue;
for (int i = start_index; i < end_index; ++i) {
result->back().push_back((*intervals)[i].index);
if ((*intervals)[i].end <= time) {
std::swap((*intervals)[start_index++], (*intervals)[i]);
} else {
min_end_in_set = std::min(min_end_in_set, (*intervals)[i].end);
}
}
// Do not output subset of size one.
if (result->back().size() == 1) result->pop_back();
}
// Add all the new intervals starting exactly at "time".
do {
min_end_in_set = std::min(min_end_in_set, (*intervals)[end_index].end);
++end_index;
} while (end_index < size && (*intervals)[end_index].start == time);
}
}
void GetOverlappingIntervalComponents(
std::vector<IndexedInterval>* intervals,
std::vector<std::vector<int>>* components) {
components->clear();
if (intervals->empty()) return;
if (intervals->size() == 1) {
components->push_back({intervals->front().index});
return;
}
// For correctness, ComparatorByStart is enough, but in unit tests we want to
// verify this function against another implementation, and fully defined
// sorting with tie-breaking makes that much easier.
// If that becomes a performance bottleneck:
// - One may want to sort the list outside of this function, and simply
// have this function DCHECK that it's sorted by start.
// - One may use std::stable_sort() with ComparatorByStart().
std::sort(intervals->begin(), intervals->end(),
IndexedInterval::ComparatorByStartThenEndThenIndex());
IntegerValue end_max_so_far = (*intervals)[0].end;
components->push_back({(*intervals)[0].index});
for (int i = 1; i < intervals->size(); ++i) {
const IndexedInterval& interval = (*intervals)[i];
if (interval.start >= end_max_so_far) {
components->push_back({interval.index});
} else {
components->back().push_back(interval.index);
}
end_max_so_far = std::max(end_max_so_far, interval.end);
}
}
std::vector<int> GetIntervalArticulationPoints(
std::vector<IndexedInterval>* intervals) {
std::vector<int> articulation_points;
if (intervals->size() < 3) return articulation_points; // Empty.
if (DEBUG_MODE) {
for (const IndexedInterval& interval : *intervals) {
DCHECK_LT(interval.start, interval.end);
}
}
std::sort(intervals->begin(), intervals->end(),
IndexedInterval::ComparatorByStart());
IntegerValue end_max_so_far = (*intervals)[0].end;
int index_of_max = 0;
IntegerValue prev_end_max = kMinIntegerValue; // Initialized as a sentinel.
for (int i = 1; i < intervals->size(); ++i) {
const IndexedInterval& interval = (*intervals)[i];
if (interval.start >= end_max_so_far) {
// New connected component.
end_max_so_far = interval.end;
index_of_max = i;
prev_end_max = kMinIntegerValue;
continue;
}
// Still the same connected component. Was the previous "max" an
// articulation point ?
if (prev_end_max != kMinIntegerValue && interval.start >= prev_end_max) {
// We might be re-inserting the same articulation point: guard against it.
if (articulation_points.empty() ||
articulation_points.back() != index_of_max) {
articulation_points.push_back(index_of_max);
}
}
// Update the max end.
if (interval.end > end_max_so_far) {
prev_end_max = end_max_so_far;
end_max_so_far = interval.end;
index_of_max = i;
} else if (interval.end > prev_end_max) {
prev_end_max = interval.end;
}
}
// Convert articulation point indices to IndexedInterval.index.
for (int& index : articulation_points) index = (*intervals)[index].index;
return articulation_points;
}
void CapacityProfile::Clear() {
events_.clear();
num_rectangles_added_ = 0;
}
void CapacityProfile::AddRectangle(IntegerValue x_min, IntegerValue x_max,
IntegerValue y_min, IntegerValue y_max) {
DCHECK_LE(x_min, x_max);
if (x_min == x_max) return;
events_.push_back(
StartRectangleEvent(num_rectangles_added_, x_min, y_min, y_max));
events_.push_back(EndRectangleEvent(num_rectangles_added_, x_max));
++num_rectangles_added_;
}
void CapacityProfile::AddMandatoryConsumption(IntegerValue x_min,
IntegerValue x_max,
IntegerValue y_height) {
DCHECK_LE(x_min, x_max);
if (x_min == x_max) return;
events_.push_back(ChangeMandatoryProfileEvent(x_min, y_height));
events_.push_back(ChangeMandatoryProfileEvent(x_max, -y_height));
}
void CapacityProfile::BuildResidualCapacityProfile(
std::vector<CapacityProfile::Rectangle>* result) {
std::sort(events_.begin(), events_.end());
IntegerPriorityQueue<QueueElement> min_pq(num_rectangles_added_);
IntegerPriorityQueue<QueueElement> max_pq(num_rectangles_added_);
IntegerValue mandatory_capacity(0);
result->clear();
result->push_back({kMinIntegerValue, IntegerValue(0)});
for (int i = 0; i < events_.size();) {
const IntegerValue current_time = events_[i].time;
for (; i < events_.size(); ++i) {
const Event& event = events_[i];
if (event.time != current_time) break;
switch (events_[i].type) {
case START_RECTANGLE: {
min_pq.Add({event.index, -event.y_min});
max_pq.Add({event.index, event.y_max});
break;
}
case END_RECTANGLE: {
min_pq.Remove(event.index);
max_pq.Remove(event.index);
break;
}
case CHANGE_MANDATORY_PROFILE: {
mandatory_capacity += event.y_min;
break;
}
}
}
DCHECK(!max_pq.IsEmpty() || mandatory_capacity == 0);
const IntegerValue new_height =
max_pq.IsEmpty()
? IntegerValue(0)
: max_pq.Top().value + min_pq.Top().value - mandatory_capacity;
if (new_height != result->back().height) {
result->push_back({current_time, new_height});
}
}
}
IntegerValue CapacityProfile::GetBoundingArea() {
std::sort(events_.begin(), events_.end());
IntegerPriorityQueue<QueueElement> min_pq(num_rectangles_added_);
IntegerPriorityQueue<QueueElement> max_pq(num_rectangles_added_);
IntegerValue area(0);
IntegerValue previous_time = kMinIntegerValue;
IntegerValue previous_height(0);
for (int i = 0; i < events_.size();) {
const IntegerValue current_time = events_[i].time;
for (; i < events_.size(); ++i) {
const Event& event = events_[i];
if (event.time != current_time) break;
switch (event.type) {
case START_RECTANGLE: {
min_pq.Add({event.index, -event.y_min});
max_pq.Add({event.index, event.y_max});
break;
}
case END_RECTANGLE: {
min_pq.Remove(event.index);
max_pq.Remove(event.index);
break;
}
case CHANGE_MANDATORY_PROFILE: {
break;
}
}
}
const IntegerValue new_height =
max_pq.IsEmpty() ? IntegerValue(0)
: max_pq.Top().value + min_pq.Top().value;
if (previous_height != 0) {
area += previous_height * (current_time - previous_time);
}
previous_time = current_time;
previous_height = new_height;
}
return area;
}
} // namespace sat
} // namespace operations_research