forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_different.cc
670 lines (604 loc) · 25 KB
/
all_different.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/all_different.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include <vector>
#include "absl/container/btree_map.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/graph/strongly_connected_components.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/sort.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
std::function<void(Model*)> AllDifferentBinary(
const std::vector<IntegerVariable>& vars) {
return [=](Model* model) {
// Fully encode all the given variables and construct a mapping value ->
// List of literal each indicating that a given variable takes this value.
//
// Note that we use a map to always add the constraints in the same order.
absl::btree_map<IntegerValue, std::vector<Literal>> value_to_literals;
IntegerEncoder* encoder = model->GetOrCreate<IntegerEncoder>();
for (const IntegerVariable var : vars) {
model->Add(FullyEncodeVariable(var));
for (const auto& entry : encoder->FullDomainEncoding(var)) {
value_to_literals[entry.value].push_back(entry.literal);
}
}
// Add an at most one constraint for each value.
for (const auto& entry : value_to_literals) {
if (entry.second.size() > 1) {
model->Add(AtMostOneConstraint(entry.second));
}
}
// If the number of values is equal to the number of variables, we have
// a permutation. We can add a bool_or for each literals attached to a
// value.
if (value_to_literals.size() == vars.size()) {
for (const auto& entry : value_to_literals) {
model->Add(ClauseConstraint(entry.second));
}
}
};
}
std::function<void(Model*)> AllDifferentOnBounds(
const std::vector<AffineExpression>& expressions) {
return [=](Model* model) {
if (expressions.empty()) return;
auto* constraint = new AllDifferentBoundsPropagator(
expressions, model->GetOrCreate<IntegerTrail>());
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
std::function<void(Model*)> AllDifferentOnBounds(
const std::vector<IntegerVariable>& vars) {
return [=](Model* model) {
if (vars.empty()) return;
std::vector<AffineExpression> expressions;
expressions.reserve(vars.size());
for (const IntegerVariable var : vars) {
expressions.push_back(AffineExpression(var));
}
auto* constraint = new AllDifferentBoundsPropagator(
expressions, model->GetOrCreate<IntegerTrail>());
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
std::function<void(Model*)> AllDifferentAC(
const std::vector<IntegerVariable>& variables) {
return [=](Model* model) {
if (variables.size() < 3) return;
AllDifferentConstraint* constraint = new AllDifferentConstraint(
variables, model->GetOrCreate<IntegerEncoder>(),
model->GetOrCreate<Trail>(), model->GetOrCreate<IntegerTrail>());
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
AllDifferentConstraint::AllDifferentConstraint(
std::vector<IntegerVariable> variables, IntegerEncoder* encoder,
Trail* trail, IntegerTrail* integer_trail)
: num_variables_(variables.size()),
variables_(std::move(variables)),
trail_(trail),
integer_trail_(integer_trail) {
// Initialize literals cache.
int64_t min_value = std::numeric_limits<int64_t>::max();
int64_t max_value = std::numeric_limits<int64_t>::min();
variable_min_value_.resize(num_variables_);
variable_max_value_.resize(num_variables_);
variable_literal_index_.resize(num_variables_);
int num_fixed_variables = 0;
for (int x = 0; x < num_variables_; x++) {
variable_min_value_[x] = integer_trail_->LowerBound(variables_[x]).value();
variable_max_value_[x] = integer_trail_->UpperBound(variables_[x]).value();
// Compute value range of all variables.
min_value = std::min(min_value, variable_min_value_[x]);
max_value = std::max(max_value, variable_max_value_[x]);
// FullyEncode does not like 1-value domains, handle this case first.
// TODO(user): Prune now, ignore these variables during solving.
if (variable_min_value_[x] == variable_max_value_[x]) {
num_fixed_variables++;
variable_literal_index_[x].push_back(kTrueLiteralIndex);
continue;
}
// Force full encoding if not already done.
if (!encoder->VariableIsFullyEncoded(variables_[x])) {
encoder->FullyEncodeVariable(variables_[x]);
}
// Fill cache with literals, default value is kFalseLiteralIndex.
int64_t size = variable_max_value_[x] - variable_min_value_[x] + 1;
variable_literal_index_[x].resize(size, kFalseLiteralIndex);
for (const auto& entry : encoder->FullDomainEncoding(variables_[x])) {
int64_t value = entry.value.value();
// Can happen because of initial propagation!
if (value < variable_min_value_[x] || variable_max_value_[x] < value) {
continue;
}
variable_literal_index_[x][value - variable_min_value_[x]] =
entry.literal.Index();
}
}
min_all_values_ = min_value;
num_all_values_ = max_value - min_value + 1;
successor_.resize(num_variables_);
variable_to_value_.assign(num_variables_, -1);
visiting_.resize(num_variables_);
variable_visited_from_.resize(num_variables_);
residual_graph_successors_.resize(num_variables_ + num_all_values_ + 1);
component_number_.resize(num_variables_ + num_all_values_ + 1);
}
void AllDifferentConstraint::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
watcher->SetPropagatorPriority(id, 2);
for (const auto& literal_indices : variable_literal_index_) {
for (const LiteralIndex li : literal_indices) {
// Watch only unbound literals.
if (li >= 0 &&
!trail_->Assignment().VariableIsAssigned(Literal(li).Variable())) {
watcher->WatchLiteral(Literal(li), id);
watcher->WatchLiteral(Literal(li).Negated(), id);
}
}
}
}
LiteralIndex AllDifferentConstraint::VariableLiteralIndexOf(int x,
int64_t value) {
return (value < variable_min_value_[x] || variable_max_value_[x] < value)
? kFalseLiteralIndex
: variable_literal_index_[x][value - variable_min_value_[x]];
}
inline bool AllDifferentConstraint::VariableHasPossibleValue(int x,
int64_t value) {
LiteralIndex li = VariableLiteralIndexOf(x, value);
if (li == kFalseLiteralIndex) return false;
if (li == kTrueLiteralIndex) return true;
DCHECK_GE(li, 0);
return !trail_->Assignment().LiteralIsFalse(Literal(li));
}
bool AllDifferentConstraint::MakeAugmentingPath(int start) {
// Do a BFS and use visiting_ as a queue, with num_visited pointing
// at its begin() and num_to_visit its end().
// To switch to the augmenting path once a nonmatched value was found,
// we remember the BFS tree in variable_visited_from_.
int num_to_visit = 0;
int num_visited = 0;
// Enqueue start.
visiting_[num_to_visit++] = start;
variable_visited_[start] = true;
variable_visited_from_[start] = -1;
while (num_visited < num_to_visit) {
// Dequeue node to visit.
const int node = visiting_[num_visited++];
for (const int value : successor_[node]) {
if (value_visited_[value]) continue;
value_visited_[value] = true;
if (value_to_variable_[value] == -1) {
// value is not matched: change path from node to start, and return.
int path_node = node;
int path_value = value;
while (path_node != -1) {
int old_value = variable_to_value_[path_node];
variable_to_value_[path_node] = path_value;
value_to_variable_[path_value] = path_node;
path_node = variable_visited_from_[path_node];
path_value = old_value;
}
return true;
} else {
// Enqueue node matched to value.
const int next_node = value_to_variable_[value];
variable_visited_[next_node] = true;
visiting_[num_to_visit++] = next_node;
variable_visited_from_[next_node] = node;
}
}
}
return false;
}
// The algorithm copies the solver state to successor_, which is used to compute
// a matching. If all variables can be matched, it generates the residual graph
// in separate vectors, computes its SCCs, and filters variable -> value if
// variable is not in the same SCC as value.
// Explanations for failure and filtering are fine-grained:
// failure is explained by a Hall set, i.e. dom(variables) \subseteq {values},
// with |variables| < |values|; filtering is explained by the Hall set that
// would happen if the variable was assigned to the value.
//
// TODO(user): If needed, there are several ways performance could be
// improved.
// If copying the variable state is too costly, it could be maintained instead.
// If the propagator has too many fruitless calls (without failing/pruning),
// we can remember the O(n) arcs used in the matching and the SCC decomposition,
// and guard calls to Propagate() if these arcs are still valid.
bool AllDifferentConstraint::Propagate() {
// Copy variable state to graph state.
prev_matching_ = variable_to_value_;
value_to_variable_.assign(num_all_values_, -1);
variable_to_value_.assign(num_variables_, -1);
for (int x = 0; x < num_variables_; x++) {
successor_[x].clear();
const int64_t min_value = integer_trail_->LowerBound(variables_[x]).value();
const int64_t max_value = integer_trail_->UpperBound(variables_[x]).value();
for (int64_t value = min_value; value <= max_value; value++) {
if (VariableHasPossibleValue(x, value)) {
const int offset_value = value - min_all_values_;
// Forward-checking should propagate x != value.
successor_[x].push_back(offset_value);
}
}
if (successor_[x].size() == 1) {
const int offset_value = successor_[x][0];
if (value_to_variable_[offset_value] == -1) {
value_to_variable_[offset_value] = x;
variable_to_value_[x] = offset_value;
}
}
}
// Because we currently propagates all clauses before entering this
// propagator, we known that this can't happen.
if (DEBUG_MODE) {
for (int x = 0; x < num_variables_; x++) {
for (const int offset_value : successor_[x]) {
if (value_to_variable_[offset_value] != -1 &&
value_to_variable_[offset_value] != x) {
LOG(FATAL) << "Should have been propagated by AllDifferentBinary()!";
}
}
}
}
// Seed with previous matching.
for (int x = 0; x < num_variables_; x++) {
if (variable_to_value_[x] != -1) continue;
const int prev_value = prev_matching_[x];
if (prev_value == -1 || value_to_variable_[prev_value] != -1) continue;
if (VariableHasPossibleValue(x, prev_matching_[x] + min_all_values_)) {
variable_to_value_[x] = prev_matching_[x];
value_to_variable_[prev_matching_[x]] = x;
}
}
// Compute max matching.
int x = 0;
for (; x < num_variables_; x++) {
if (variable_to_value_[x] == -1) {
value_visited_.assign(num_all_values_, false);
variable_visited_.assign(num_variables_, false);
MakeAugmentingPath(x);
}
if (variable_to_value_[x] == -1) break; // No augmenting path exists.
}
// Fail if covering variables impossible.
// Explain with the forbidden parts of the graph that prevent
// MakeAugmentingPath from increasing the matching size.
if (x < num_variables_) {
// For now explain all forbidden arcs.
std::vector<Literal>* conflict = trail_->MutableConflict();
conflict->clear();
for (int y = 0; y < num_variables_; y++) {
if (!variable_visited_[y]) continue;
for (int value = variable_min_value_[y]; value <= variable_max_value_[y];
value++) {
const LiteralIndex li = VariableLiteralIndexOf(y, value);
if (li >= 0 && !value_visited_[value - min_all_values_]) {
DCHECK(trail_->Assignment().LiteralIsFalse(Literal(li)));
conflict->push_back(Literal(li));
}
}
}
return false;
}
// The current matching is a valid solution, now try to filter values.
// Build residual graph, compute its SCCs.
for (int x = 0; x < num_variables_; x++) {
residual_graph_successors_[x].clear();
for (const int succ : successor_[x]) {
if (succ != variable_to_value_[x]) {
residual_graph_successors_[x].push_back(num_variables_ + succ);
}
}
}
for (int offset_value = 0; offset_value < num_all_values_; offset_value++) {
residual_graph_successors_[num_variables_ + offset_value].clear();
if (value_to_variable_[offset_value] != -1) {
residual_graph_successors_[num_variables_ + offset_value].push_back(
value_to_variable_[offset_value]);
}
}
const int dummy_node = num_variables_ + num_all_values_;
residual_graph_successors_[dummy_node].clear();
if (num_variables_ < num_all_values_) {
for (int x = 0; x < num_variables_; x++) {
residual_graph_successors_[dummy_node].push_back(x);
}
for (int offset_value = 0; offset_value < num_all_values_; offset_value++) {
if (value_to_variable_[offset_value] == -1) {
residual_graph_successors_[num_variables_ + offset_value].push_back(
dummy_node);
}
}
}
// Compute SCCs, make node -> component map.
struct SccOutput {
explicit SccOutput(std::vector<int>* c) : components(c) {}
void emplace_back(int const* b, int const* e) {
for (int const* it = b; it < e; ++it) {
(*components)[*it] = num_components;
}
++num_components;
}
int num_components = 0;
std::vector<int>* components;
};
SccOutput scc_output(&component_number_);
FindStronglyConnectedComponents(
static_cast<int>(residual_graph_successors_.size()),
residual_graph_successors_, &scc_output);
// Remove arcs var -> val where SCC(var) -/->* SCC(val).
for (int x = 0; x < num_variables_; x++) {
if (successor_[x].size() == 1) continue;
for (const int offset_value : successor_[x]) {
const int value_node = offset_value + num_variables_;
if (variable_to_value_[x] != offset_value &&
component_number_[x] != component_number_[value_node] &&
VariableHasPossibleValue(x, offset_value + min_all_values_)) {
// We can deduce that x != value. To explain, force x == offset_value,
// then find another assignment for the variable matched to
// offset_value. It will fail: explaining why is the same as
// explaining failure as above, and it is an explanation of x != value.
value_visited_.assign(num_all_values_, false);
variable_visited_.assign(num_variables_, false);
// Undo x -> old_value and old_variable -> offset_value.
const int old_variable = value_to_variable_[offset_value];
variable_to_value_[old_variable] = -1;
const int old_value = variable_to_value_[x];
value_to_variable_[old_value] = -1;
variable_to_value_[x] = offset_value;
value_to_variable_[offset_value] = x;
value_visited_[offset_value] = true;
MakeAugmentingPath(old_variable);
DCHECK_EQ(variable_to_value_[old_variable], -1); // No reassignment.
std::vector<Literal>* reason = trail_->GetEmptyVectorToStoreReason();
for (int y = 0; y < num_variables_; y++) {
if (!variable_visited_[y]) continue;
for (int value = variable_min_value_[y];
value <= variable_max_value_[y]; value++) {
const LiteralIndex li = VariableLiteralIndexOf(y, value);
if (li >= 0 && !value_visited_[value - min_all_values_]) {
DCHECK(!VariableHasPossibleValue(y, value));
reason->push_back(Literal(li));
}
}
}
const LiteralIndex li =
VariableLiteralIndexOf(x, offset_value + min_all_values_);
DCHECK_NE(li, kTrueLiteralIndex);
DCHECK_NE(li, kFalseLiteralIndex);
return trail_->EnqueueWithStoredReason(Literal(li).Negated());
}
}
}
return true;
}
AllDifferentBoundsPropagator::AllDifferentBoundsPropagator(
const std::vector<AffineExpression>& expressions,
IntegerTrail* integer_trail)
: integer_trail_(integer_trail) {
CHECK(!expressions.empty());
// We need +2 for sentinels.
const int capacity = expressions.size() + 2;
index_to_start_index_.resize(capacity);
index_to_end_index_.resize(capacity);
index_is_present_.resize(capacity, false);
index_to_expr_.resize(capacity, kNoIntegerVariable);
for (int i = 0; i < expressions.size(); ++i) {
bounds_.push_back({expressions[i]});
negated_bounds_.push_back({expressions[i].Negated()});
}
}
bool AllDifferentBoundsPropagator::Propagate() {
if (!PropagateLowerBounds()) return false;
// Note that it is not required to swap back bounds_ and negated_bounds_.
// TODO(user): investigate the impact.
std::swap(bounds_, negated_bounds_);
const bool result = PropagateLowerBounds();
std::swap(bounds_, negated_bounds_);
return result;
}
void AllDifferentBoundsPropagator::FillHallReason(IntegerValue hall_lb,
IntegerValue hall_ub) {
integer_reason_.clear();
const int limit = GetIndex(hall_ub);
for (int i = GetIndex(hall_lb); i <= limit; ++i) {
const AffineExpression expr = index_to_expr_[i];
integer_reason_.push_back(expr.GreaterOrEqual(hall_lb));
integer_reason_.push_back(expr.LowerOrEqual(hall_ub));
}
}
int AllDifferentBoundsPropagator::FindStartIndexAndCompressPath(int index) {
// First, walk the pointer until we find one pointing to itself.
int start_index = index;
while (true) {
const int next = index_to_start_index_[start_index];
if (start_index == next) break;
start_index = next;
}
// Second, redo the same thing and make everyone point to the representative.
while (true) {
const int next = index_to_start_index_[index];
if (start_index == next) break;
index_to_start_index_[index] = start_index;
index = next;
}
return start_index;
}
bool AllDifferentBoundsPropagator::PropagateLowerBounds() {
// Start by filling the cached bounds and sorting by increasing lb.
for (CachedBounds& entry : bounds_) {
entry.lb = integer_trail_->LowerBound(entry.expr);
entry.ub = integer_trail_->UpperBound(entry.expr);
}
IncrementalSort(bounds_.begin(), bounds_.end(),
[](CachedBounds a, CachedBounds b) { return a.lb < b.lb; });
// We will split the affine epressions in vars sorted by lb in contiguous
// subset with index of the form [start, start + num_in_window).
int start = 0;
int num_in_window = 1;
// Minimum lower bound in the current window.
IntegerValue min_lb = bounds_.front().lb;
const int size = bounds_.size();
for (int i = 1; i < size; ++i) {
const IntegerValue lb = bounds_[i].lb;
// If the lower bounds of all the other variables is greater, then it can
// never fall into a potential hall interval formed by the variable in the
// current window, so we can split the problem into independent parts.
if (lb <= min_lb + IntegerValue(num_in_window - 1)) {
++num_in_window;
continue;
}
// Process the current window.
if (num_in_window > 1) {
absl::Span<CachedBounds> window(&bounds_[start], num_in_window);
if (!PropagateLowerBoundsInternal(min_lb, window)) {
return false;
}
}
// Start of the next window.
start = i;
num_in_window = 1;
min_lb = lb;
}
// Take care of the last window.
if (num_in_window > 1) {
absl::Span<CachedBounds> window(&bounds_[start], num_in_window);
return PropagateLowerBoundsInternal(min_lb, window);
}
return true;
}
bool AllDifferentBoundsPropagator::PropagateLowerBoundsInternal(
IntegerValue min_lb, absl::Span<CachedBounds> bounds) {
hall_starts_.clear();
hall_ends_.clear();
// All cached lb in bounds will be in [min_lb, min_lb + bounds_.size()).
// Make sure we change our base_ so that GetIndex() fit in our buffers.
base_ = min_lb - IntegerValue(1);
// Sparse cleaning of index_is_present_.
for (const int i : indices_to_clear_) {
index_is_present_[i] = false;
}
indices_to_clear_.clear();
// Sort bounds by increasing ub.
std::sort(bounds.begin(), bounds.end(),
[](CachedBounds a, CachedBounds b) { return a.ub < b.ub; });
for (const CachedBounds entry : bounds) {
const AffineExpression expr = entry.expr;
// Note that it is important to use the cache to make sure GetIndex() is
// not out of bound in case integer_trail_->LowerBound() changed when we
// pushed something.
const IntegerValue lb = entry.lb;
const int lb_index = GetIndex(lb);
const bool value_is_covered = index_is_present_[lb_index];
// Check if lb is in an Hall interval, and push it if this is the case.
if (value_is_covered) {
const int hall_index =
std::lower_bound(hall_ends_.begin(), hall_ends_.end(), lb) -
hall_ends_.begin();
if (hall_index < hall_ends_.size() && hall_starts_[hall_index] <= lb) {
const IntegerValue hs = hall_starts_[hall_index];
const IntegerValue he = hall_ends_[hall_index];
FillHallReason(hs, he);
integer_reason_.push_back(expr.GreaterOrEqual(hs));
if (!integer_trail_->SafeEnqueue(expr.GreaterOrEqual(he + 1),
integer_reason_)) {
return false;
}
}
}
// Update our internal representation of the non-consecutive intervals.
//
// If lb is not used, we add a node there, otherwise we add it to the
// right of the interval that contains lb. In both cases, if there is an
// interval to the left (resp. right) we merge them.
int new_index = lb_index;
int start_index = lb_index;
int end_index = lb_index;
if (value_is_covered) {
start_index = FindStartIndexAndCompressPath(new_index);
new_index = index_to_end_index_[start_index] + 1;
end_index = new_index;
} else {
if (index_is_present_[new_index - 1]) {
start_index = FindStartIndexAndCompressPath(new_index - 1);
}
}
if (index_is_present_[new_index + 1]) {
end_index = index_to_end_index_[new_index + 1];
index_to_start_index_[new_index + 1] = start_index;
}
// Update the end of the representative.
index_to_end_index_[start_index] = end_index;
// This is the only place where we "add" a new node.
{
index_to_start_index_[new_index] = start_index;
index_to_expr_[new_index] = expr;
index_is_present_[new_index] = true;
indices_to_clear_.push_back(new_index);
}
// In most situation, we cannot have a conflict now, because it should have
// been detected before by pushing an interval lower bound past its upper
// bound. However, it is possible that when we push one bound, other bounds
// change. So if the upper bound is smaller than the current interval end,
// we abort so that the conflit reason will be better on the next call to
// the propagator.
const IntegerValue end = GetValue(end_index);
if (end > integer_trail_->UpperBound(expr)) return true;
// If we have a new Hall interval, add it to the set. Note that it will
// always be last, and if it overlaps some previous Hall intervals, it
// always overlaps them fully.
//
// Note: It is okay to not use entry.ub here if we want to fetch the last
// value, but in practice it shouldn't really change when we push a
// lower_bound and it is faster to use the cached entry.
if (end == entry.ub) {
const IntegerValue start = GetValue(start_index);
while (!hall_starts_.empty() && start <= hall_starts_.back()) {
hall_starts_.pop_back();
hall_ends_.pop_back();
}
DCHECK(hall_ends_.empty() || hall_ends_.back() < start);
hall_starts_.push_back(start);
hall_ends_.push_back(end);
}
}
return true;
}
void AllDifferentBoundsPropagator::RegisterWith(
GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
for (const CachedBounds& entry : bounds_) {
watcher->WatchAffineExpression(entry.expr, id);
}
watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
}
} // namespace sat
} // namespace operations_research